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Progress Report

1. Introduction

It seems improbable that a single operating system will suffice to solve all the application
problems that are likely to arise in future real-time, embedded systems. A much more likely
scenarin is that future engineers, with support from a programming environment, will select and
adapt modules from program libraries. The selected modules must have proven operating
characteristics and the domain over which they are applicable must be well-defined.

The StarLite Project, which is supported by the Office of Naval Research, has the goal of
constructing such a program library for real-time applications. The initial focus of the project is
on operating system and database support.

Another goal of the StarLite project is to test the hypotiiesis that a host prototyping
environment can be used to significantly accelerate our ability to perform experiments in the
areas of operating systems, databases, and network protocols. The primary project requirement
for StarLite is that software developed in the prototyping environment must be capable of being
retargeted to different architectures only by recompiling and replacing a few low-lcvel modules.
The anticipated benefits are fast prototyping times, greater sharing of software in the research
community, and the ability for one research group to validate the claims of another by replicating
experimental conditions exactly.

As one measure of the effectiveness of the environment, it is often possible to fix errors in
the operating system, compile, and reboot the StarLite virtual machine in less than twenty
seconds. The compilation time on a SUN 3/280 for the 66 modules (7500 lines) that comprise
the operating system is one minute (clock) or 16 seconds (user time). The StarLite VM, as
measured by Wirth’s Modula-2 benchmark program[1], executes at a speed of from one to six
times that of a PDP 11/40, depcnding on the mix of instructions.

The StarLite prototyping architecture is designed to support the simultaneous execution of
multiple operating systems in a single address space. For example, to prototype a distributed
operating system, we might want to initiate a file server and several clients. Each virtual machine
would have its own operating system and user processes. All of the code and data for all of the
virtual machines would be executed as a single UNIX process.

In order to support this requirement, we assume the existence of high-performance
workstations with large local memories. Ideally, we would prefer multi-thread support, but
multiprocessor workstations are not yet widely available. We also assume that hardware details
can be isolated behind high-level language interfaces to the extent that the majority of a system's
software remains invariant when rctargeted from the host to a target architecture.

The progress to date and a brief description of future work for each of the StarLite
components are listed in Figurc 1. Each component of the project is covered in greater detail in
later Sections. At the present time, all components execute on SUN workstations using the
StarLite Modula-2 system.

2. Related Activities

Cook and Son, participants in the IBM Manassas Real-Time Workshop, (April 1988).

Cook and Son, participants in coordination meeting with Professor Tokuda from CMU and Pat
Watson from IBM, (July 1988).

Cook and Son, participants in coordination meeting with Pat Watson from IBM. (August 1988).
Cook, reviewed the Draft NATO Requircments and Design Criteria for the NATO Standard
Interface Specification of Ada Programming Support Environments at the request of LTC(P)
David R. Taylor (AJPO), (Fcb. 1988).

Cook, Session chair and panel member, Fifth IEEE Workshop on Real-Time Software and
Operating Systems, (May 1988).
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Son, participant San Jose ONR Real-Time Initiative Workshop, (Dec. 1987).
Son, Guest Editor, ACM SIGMOD Record, Special Issue on Real-Time Database Systems,
@ (March 1988).

3. Student Participation

Chun-Hyon Chang (Post Doc.), priority-based contention protocol
Veena Bansal (Ph.D. student), debugger
® Jeremiah Ratner (Ph.D. student), database development
Yumi Kim (M.S.), multi-version database evaluation
Chris Koeritz(M.Sc. student), operating system
Richard Testardi(M.Sc.), compiler
Jenona Whitlach(M.S.), file system development
Nancy Yeager(M.S.), meta-file system
L Richard McDaniel(B.S. student), prototyping environment

4. Publications

e Journal Publications

L J
(1) Cook, R. P. and S. H. Son, "StarLite, A Software Prototyping Environment," [EEE
Computer Special Issue on Rapid Prototyping, (submitted).
(2) Cook, R. P, "An Empirical Analysis of the Lilith Instruction Set," /EEE Transactions on
Y Computers, (to appear).
(3) Son, S. H., "Replicated Data Management in Distributed Database Systems," ACM
SIGMOD Record, (to appear).
(4) Son, S. H., "Semantic Information and Consistency in Distributed Real-Time Systems,"
® Information and Software Technology 30, September 1988 (to appear).
(5) Son, S. H, "Real-Time Database Systems: Issues and Approaches,” ACM SIGMOD
Record, Special Issue on Real-Time Database Systems 17, 1, March 1988.
(6) Son, S. H,, "Using Replication to Improve Reliability in Distributed Information Systems,"
Information and Software Technology 29, October 1987.
L 4
o Refereed Conference Publications
(7) Cook, R. P, "The StarLite Prototyping Architecture,” Third International Conference on
Architectural Support for Programming Langiages and Operating Systems, (submitted).
[ J

(8)  Shebalin, P., S. H. Son, and C.-H. Chang, "An Approach to Software Safety Analysis in a
Distributed Real-Time System," Third Annual Conference on Computer Assurance
(COMPASS ' 88), Washington, DC, July 1988, pp 29-43,

(9) Son, S. H., "A Message-Based Approach to Distributed Database Prototyping,” Fifth IEEE

L Workshop on Real-Time Software and Operating Systems, Washington, DC, May 1988, pp
71-74.




Son, S. H.,, "An Adaptive Checkpointing Scheme for Distributed Databases with Mixed
Types of Transactions,” Fourth International Conference on Data Engineering, Los
Angeles, California, Feb. 1988, pp 528-535.

(11) Son, S. H. and J. L. Pfaltz, "Reliability Mechanisms for ADAMS," Third Conference on
Hypercube Concurrent Computers and Applications, Pasadena, Califomia, January 1988.

(12) Son, S. H., "Efficient Decentralized Checkpointing in Distributed Database Systems," 21s¢
Hawaii International Conference on System Sciences, Kailua-Kona, Hawaii, Jan. 1988,
Vol. 2, pp 554-560.

(13) Son, S. H., "Using Replication for High Performance Database Support in Distributed
Real-Time Systems," 8th I[EEE Real-Time Systems Symposium, San Jose, California, Dec.
1987, pp 79-86.

(14) Son, S. H., "A Recovery Scheme for Database Systems with Large Main Memory," 1/th
International Computer Software and Applications Conference (COMPSAC 87), Tokyo,
Japan, Oct. 1987, pp 422-427.

e Technical Reports

(15) Cook, R. P., "Minimizing Response Time".
(16) Cook, R. P., "An Introduction to Modula-2 for Pascal Programmers".
(17) Cook, R. P., "An Introduction to Modular Programming"”.

(18) Son, S. H. and Y. Kim, "A Prototyping Environment for Distributed Database Systems,"
Technical Report TR-88-20, Dept. of Computer Science, University of Virginia, August
1988.

(19) Shebalin, P., S. H. Son, and C.-H. Chang, "An Approach to Software Safety Analysis in a
Distributed Real-Time System,” Technical Report TR-88-13, Dept. of Computer Science,
University of Virginia, May 1988.

20) Son, S. H. and S. Tripathi, "Distributed Database Systems: Failure Recovery Procedure,”
Technical Report TR-88-6, Dept. of Computer Science, University of Virginia, March
1988.

5. The Prototyping Environment

The components of the environment include a Modula-2 compiler, a symbolic debugger, an
interpreter/runtime package, the Phoenix opecrating system. a visual simulation package, and
documentation. With Professor Davidson’s help, we will eventually retarget his C compiler to
produce code for the interpreter/runtime package. Thus, either C or Modula-2 can be used for
development. The environment, which currendy runs on PCs and SUNS, will also be portable to
other hosts.

The programming environment at present consists of a Modula-2 one-pass compiler,
interpreter, and simulation package. The compiler supports the Revised Modula-2 Language
Definition, except for the LONGREAL/CARD types: LONGINT is supported. Its compilation




speed is twice as fast as the Logitech 286 compiler and five times as fast as the SUN-3 Modula-2
compiler. It also compiles faster than either the MicroSoft C compiler on a PC286 or the SUN-3
C compiler. Fast compilation has been rated as essential to the success of a programming
environment (see, for example, Xerox CSL-80-10).

Both the compiler and runtime were ported to C during the past year. The compiler is also
implemented in Modula-2. The generated code is for a 32-bit virtual architecture(S-code) that is
designed to be extremely space efficient. For example, the object code sizes for a program
consisting of 1,000 assignment statements was SUN-Modula(130K), SUN-C(65K), PC286-
C(35K), PC286-Modula(11K). Compact code has a significant effect on the speed with which
the environment can load both system components and user-level programs that might run on
those components. Code generators for a number of target environments are planned for the
future. In fact, Professor Davidson had a MS student retarget the Modula-2 back-end to the VAX
over the summer to demonstrate the feasibility of this claim.

The interpreter/runtime system for the enviio.meant is unique in a number of respects. First,
it supports dynamic linking; that is, modules are loaded at the point that one of their procedures is
called. Thus, a large sofiware system begins execution very quickly and then loads only the
modules that are actually tested. At the current time, a linker is superfluous; as soon as a module
is compiled, it may be executed. The second feature of the interpreter is that it maximizes
sharing. There will be only one copy of shared code no matter how many times it is used at
either the user or operating system levels. Next, the clocks on the interpreter’s virtual machines
are driven by the number of S-code instructions executed or the actions of simulated devices.
Thus, timings for the StarLite host environment can be used to approximate those in a target
environment by varying the ratio of S-code instructions necessary for a clock tick. Finaily, the
interpreter is designed to support a number of different execution modelis.

During the past year, we completed the implementation of the distributed processor model
together with a window package that provides a virtual terminal for each processor. To date, we
have tested it with six nodes, each executing UNIX.

The visual simulation package incorporates many of the features of the GPSS simulation
language. The traditional "delay" function is provided, as well as the Store and Table simulation
types that are used for statistics gathering. Typically, the presence of simulation code is isolated
at the lowest levels of a system. By keeping interfaces compatible, a simulation module can be
replaced by a module for the target machine. Thus, the higher levels of the software hierarchy
remain unchanged when moving code from the host environment to a target.

The final component of the environment is the symbolic debugger, which was also
completed during the past year. It allows the user to name any component of a running program
and to retrieve the value, type, or address associated with any name. Also, it has the capability to
examine multiple threads of control. Eventually, we will add support for user-defined "views" of
data abstractions and the ability to view data other than program images. For example, the
debugger could be used 10 examine, or modify, a file that was described in the Modula-2 Interface
Definition Language, which is supported by the compiler.

In summary, the environment is designed to maximize productivity. Therefore, it
accelerates a researcher’s ability to conduct experiments, which advances the state-of-the-art.
While the initial version of the environment exccutes as a single UNIX process, future versions
could take excellent advantage of both load balancing to distribute a running prototype across a
number of machines and of multiprocessor support, such as is found in Mach or Taos.

6. Operating System

During the past year, additional functionality was added to the Phoenix operating system,
including a file system and a shell. The system is unique in that it is object-based and is




implemented as a module hierarchy. Also, Phoenix attempts to minimize the use of shared locks,
which is the opposite of most current UNIX implementations. Phoenix also uses an integrated
priority mechanism that is applied uniformly across all system queues.

Our goal for the coming year is to add real-time guarantees to the Phoenix system. If we
are successful, it will be the first such UNIX system. We will also be working to extend the
functionality of the operating system as we do not currently support all of SVID. In situations
where guarantees cannot be provided, we will change the UNIX interface.

During the past year, we also tested a distributed six-node Phoenix system. However, since
we haven't implemented network device drivers, the nodes could not communicate. We will be
adding the drive.s during the coming year so that we can experiment with real-time issues in the
distributed programming area.

Another goal for the coming year is to integrate the Phoenix OS and the database system.
At the present time, the database research uses simulated file systems. By using Phoenix, real file
systems can be used at each node. As a result, any real-time guarantees that we can provide will
be across a complete, end-to-end, distributed operating environment.

7. Database Systems

It has been recognized that database systems are assuming much greater importance in
real-time systems, which must maintain high reliability and high performance. State-of-the-art
database systems are typically not used in real-time applications due to two inadequacies: poor
performance and lack of predictability. Current database systems do not schedule their
transactions to meet response requirements and they commonly lock data tables indiscriminately
to assure database consistency. Locks and time-driven scheduling are basically incompatible.
Low priority transactions can and will block higher priority transactions leading to response
requirement failures. New techniques that are compatible with time-driven scheduling and the
system response predictability need to be investigated.

Our research effort during the past year was concentrated in two areas: investigating new
techniques for real-time database systems and developing a message-based database prototyping
environment. In addition, to avoid the useless effort in "re-inventing the wheel”, Professor Son
has spent a significant amount of effort working as a guest editor for the ACM SIGMOD Record,
collecting current research work in real-time database systems being investigated by other
researchers. Selected papers were published in the ACM SIGMOD Record special issue on Real-
Time Database Systems (Vol. 17, No. 1, March 1988). This was the first time that a whole issue
of the ACM SIGMOD Record, a publication widely circulated in the database research
community, has been devoted to a special topic. This was also the first time that research work in
real-time database systems was collected and published in a single issue.

7.1. New Approaches

Compared with traditional databases, real-time database systems have a distinct feature:
they must satisfy not only the database consistency constraints but also the timing constraints
associated with transactions. In other words, "time" is one of the key factors to be considered in
rcal-time database systems. Transactions must be scheduled in such a way that they can be
completed before their corresponding deadlines expire. For example, both the update and query
on a tracking data of a missile must be processed within the given deadlines: otherwise, the
information provided could be of little value.

We have investigated two approaches in designing rcal-time database systems. The first
approach is to redesign a conventional database system's architecture to replace bottleneck
components (e.g., a disk) by a high-spced version. A main-memory database system falls in this
category. The second approach is to trade desired features (such as scrializability) for higher




performance or to exploit semantic information of transactions and data to use the notion of
correctness different from the serializability of transaction execution. This approach, combined
with effective use of data replication may improve performance and reliability.

The availability of large, relatively inexpensive main memories coupled with the demand
for faster response time for real-time database systems has brought a new perspective to database
system designers: main memory databases in which the primary copies of all data reside
permanently in main memory. Since database operations are mostly /O bound, elimination of
disk access delays can contribute to substantial improvement 1n transaction response time,
However, the migration of data from secondary storage to main memory requires a careful
investigation of the components of traditional database management systems, since they
introduce some potential problems of their own. The most critical problem is associated with the
recovery mechanism of the system, which must guarantee transaction atomicity and durability in
the face of system failures. We have developed a recovery mechanism based on non-interfering
consistent checkpointing and log compression. On-line log compression is necessary to keep the
log short to achieve a rapid restart. Compression can be used by any database system to improve
restart time, but is essential for main memory database systems which may achieve very high
transaction throughput. As opposed to most other recovery techniques, our technique has the
advantage that a portion of memory can be made non-volatile by using batteries as a backup
power supply. By exploiting this portion of non-volatile memory, log compression can be
achieved effectively.

Performance of real-time database systems can be enhanced by the use of semantics of
transactions and temporal data models, based on different notions of "correct execution" of
transactions. Since all transactions are pre-compiled in many real-time database systems,
semantic information such as types of transactions and data objects they need to access can be
collected and used effectively. A read-only transaction is a typical example of the use of
transaction semantics. A read-only transaction can be used to take a checkpoint of the database
for recovering from subsequent failures, or to check the consistency of the database, or simply to
retrieve the information from the database. Since read-only transactions are still transactions,
they can be processed using the algorithms for arbitrary transactions. However, it is possible to
use special processing algorithms for read-only transactions in order to improve efficiency,
resulting in high perfcrmance.

Serializability has been accepted as the standard comrectness criteria in database systems.
However, people actually developing large real-time systems are unwilling to pay the price for
serializability, because predictability of response is severely compromised due to blocking or
preemption. For read-only transactions, correctriess requirements can be divided into two
independent classes: the currency requirement and the consistency requirement. The currency
requircment specifies what update transactions should be reflected by the data rcad. The
consistency requircment specifics the degree of consisiency needed by rcad-only transactions:
intemal consistency, weak consistency, and strong consistency. High performance and reliability
of the system can be achieved by using different correctness requirements for read-only
transactions. Clearly, strong consistency is preferable in many situations to weak consistency.
However, it can be cheaper to ensure weak consistency than to ensure strong consistency. For the
applications that can tolerate a weaker rcquircment, the potential performance gain could be
significant. We have investigated mecthods to specify correctness requirements and new
techniques to combine them with data replication. Our rescarch effort has resulted in a feasible
solution using time-stamps and muliiversions of data objects.

7.2. Development of A Database Prototyping Tool

One of the pnimary rcasons for the difficulty in successfully developing and evaluating new
techniques for distributed database systems is that 1t takes a long time to develop a system, and
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evaluation is complicated because it involves a large number of system parameters that may
change dynamically. Prototyping methods can be applied effectively to the evaluation of new
techniques for implementing distributed database systems. By investigating design altematives
and performance/reliability characteristics of new database techniques, we can provide a clear
understanding of design alternatives with their costs and benefits in quantitative measures.
Furthermore, database technology can be implemented in a modular reusable form to enhance
experimentation. Although there exist tools for system development and analysis, few

prototyping tools exist for distributed database experimentation, especially for distributed real-
time database systems.

A prototypinig tool to implement database technology should be flexible and organized in a
modular fashion to provide enhanced experimentation capability. A user should be able to
specify system configurations such as the number of sites, network topology, the number and
locations of processes, the number and locations of resources, and the interaction among
processes. We use the client/server paradigm for process interaction in our prototyping tool. The
system consists of a set of clients and servers, which are processes that cooperate for the purpose
of transaction processing. Each server provides a service to the clients of the system, where a
client can request a service by sending a request message to the corresponding server.

We have implemented a preliminary version of the prototyping tool running under StarLite
on a Sun workstation. The current prototyping tool provides concurrent transaction execution
facilities, including two-phase locking and timestamp ordering as underlying synchronization
mechanisms. A series of experiments have been performed to test the correctness of the design
and validity of the preliminary implementation of those two synchronization mechanisms. The
primary performance metrics for the study were transaction response time, system throughput,
and the number of aborted transactions. As a general rule, we found that transaction response
time, in both mechanisms, increases with the increase of the degree of data distribution and the

number of conflicts. The current prototyping tool also provides a multiversion data object control
mechanism.

In a real-time database system, synchronization protocols must not only maintain the
consistency constraints of the database but also satisfy the timing requirements of the transactions
accessing the database. To satisfy both the consistency and real-time constraints, there is the
need to integrate synchronization protocols with real-time priority scheduling protocols. A major
source of problems in integrating the two protocols is the lack of coordination in the development
of synchronization protocols and real-time priority scheduling protocols. Due to the effect of
blocking in lock-based synchronization protocols, a direct application of a real-time scheduling
algorithm 10 transactions may result in a condition known as priority inversion. Priority
inversion is said to occur when a higher priority process is forced to wait for the execution of a
lower priority process for an indefinite period of time. Priority inversion is inevitabie in
transaction systems. However, to achieve a high degree of schedulability in real-time
applications, priority inversion must be minimized. We have been implementing priority-based

scheduling algorithms in our prototyping environment, and investigating technical issues
associated with them.




Semantic Information and Consistency
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. ABSTRACT

Considerable research effort has been devoted to the problem of developing techniques for achiev-
ing high availability of critical data in distributed real-time systems. One approach is to use replication.
- Replicated data is stored redundantly at multiple sites so that it can be used even if some of the copies are

/ not available due to failures. This paper presents an algorithm for maintaining consistency and improving

b the performance of database with replicated data in distributed real-time systems. The semantic informa-
‘ L4
19 . . . . . . . . . .
¥ tion of read-only transactions is exploited for improved efficiency, and a multiversion technique is used to
)
¢ . . . . . .
; increase the degree of concurrency. Related issues including version management and consistency of the
o _ :
- states seen by transactions are discussed.
>
» Index Terms: distributed system, replication, read-only transaction, consistency, multiversion,
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1. Introduction

® A distributed system consists of multiple aulonomous computer systems (called sites) that are con-

. nected via a communication network. Since the physical separation of sites ensures the independent

failure modes of sites and limits the propagation of errors throughout the system, distributed systems

o must be able to continue to operatc correctly despite of component failures. However, as the size of a dis-

tributed system increases, so does the probability that one or more of its components will fail. Thus, dis-

tributed systems must be fault tolerant to component failures to achieve a desired level of reliability and

availability. Asserting that the system will continue to operate correctly if less than a certain number of

N failure occurs is a guarantee independent of the reliability of the sites that make up the system. It is a

measure of the fault tolerance supported by the system architecture, in contrast to fault tolerance achieved

by using reliable components.

Considerable rescarch effort has been devoted in recent years to the problem of developing tech-

niques for achieving high availability of critical data in distributed systems. An obvious approach to

improve availability is to keep replicated copies of such data at multiple sites so that the system can

access the data even if some of the copies are not available due to failures. In addition to improved avai-

lability, replication can enhance performance by allowing user requests initiated at sites where the data

are stored to be processed locally without incurring communication delays, and by distributing the work-

load of user requests to several sites where the subtasks of a user request can be processed concurrently.

3 These benefits of replication must be scen in the light of the additonal cost and complexities introduced

, by replication control.

A major restriction of using replication is that replicated copies must behave like a single copy. i.e.,

) mutual consistency of a replicated data must be preserved. By mutual consistency, we mean that all

copies converge to the same value and would be identical if all update activities cease. The inherent com-
munication delay between sites that store and maintain copies of a replicated data makes it impossible to

0o ensure that all copies are identical at all times when updates are processed in the system.




Mutual consistency is not the only constraint a distributed system must satisfy. In a system where

- several users concurrently access and update data, operations from different user requests may need to be

-

interleaved and allowed to operate concurrently on data for higher throughput of the system. Concurrency

o
PRI B I

control is the activity of coordinating concurrent accesses to the system in order to provide the effect that

each request is executed in a serial fashion. The task of concurrency control in a distributed system is

more complicated than that in a centralized system mainly because the information used to make schedul-

ing decisions is itself distributed, and it rmust be managed properly to make correct decisions.

PFIELS

4@ A number of concurrency control schemes proposed are based on the maintenance of multiple ver-
sions of data objects[BAY80, BER83, CHARS, REE83 SONS86, SON87, STE81]. The objective of using
L multiple versions is to increase the degree of concurrency and to reduce the possibility of rejection of user
requests by providing a succession of views of data objects. One of the reasons for rejecting a user request

is that its operations cannot be serviced by the system. For example, a read operation has to be rejected if

-
L e

the value of data object it was supposed to read has already been overwritten by some other user request,

Such rejections can be avoided by keeping old versions of each data object so that an appropriate old

value can be given to a tardy read operation. In a system with multiple versions of data, each write opera-

\ tion on a data object produces a new version instead of overwriting it. Hence, for each read operation, the

system selects an appropriate version to read, enjoying the flexibility in controlling the order of read and

write operations.

-

iy P e

A read-only transaction is a user request that does not modify the state of the database. A read-only

transaction can be used to take a checkpoint of the database for recovering from subsequent failures, or to

-:
.

check the consistency of the database, or simply to retrieve the information from the database. Many
applications of distributed databases for rcal-time systems can be characterized by a dominance of read-
only transactions. Since read-only transactions are still transactions, they can be processed using the algo-
rithms for arbitrary transactions. However, it is possible to use special processing algorithms for read-
only transactions in order to improve efficiency, resulting in high performance. With this approach, the

specialized transaction processing algorithm can take advantage of the semantic information that no data
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will be modified by the transaction.

In this paper, we explore this idea of read-only transaction processing, and present a synchroniza-
tion algorithm for read-only transactions in distributed environments. The algorithm is based on the idea
of maintaining multiple versions of necessary data objects in the system, and requires read-only transac-
tions to be identified to the system before they begin execution. By preventing interference between
read-only transactions and other update transactions, the algorithm guarantees that read-only transactions
will be successfully completed. [n addition, the replication method used in the algorithm masks failures

as long as one or more copies remain available.

There are several problems that must be solved by an algorithm that uses multiple versions. For
example, selection of old versions for a given read-only transaction must ensure the consistency of the
state seen by the transaction. In addition, the need to save old versions for read-only transactions intro-
duces a storage management problem, i.e., methods to determine which version is no longer needed so

that it can be discarded. In this paper, we focus our attention on these problems.

In the next section we present the basic concepts that are needed for this paper. Section 3 describes
the execution of logical operations by corresponding physical operations. Section 4 describes our syn-
chronization algorithm for replicated data. Section 5 presents two recovery procedures that can be used
for replicated data objects, and Section 6 discusses the availability of replicated data. Section 7 concludes

the paper.

2. Basic Concepts

A distributed database is a collection of data objects. Each data object has a name and is represented
by a set of one or more replicated copies. Copies of a given data object should have the same value,
although the values may be temporarily different due to upﬁate activities. In addition to data objects, a
distributed database has a collection of consistency constraints. A consistency constraint is a predicate
defined on the database which describes the relationships that must hold ainorg the data objects and their

values [ESW76].
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": Users interact with the database by submitting transactions. Each transaction represents a complete
A and correct computation, i.e., if a transaction is executed alone on an initially consistent database, it

'.', would terminate in a finite time and produce correct results, leaving the database consistent. A transaction

consists of different types of onerations such as read, -ritz, and local computations. Read and write

! . operations are used to access data objects, and local computations are used to determine the new values of

b

': data objects for write operations. Algorithms for replication control and synchronization pay no attention

N

to local computations; they make scheduling decisions on the basis of the data objects a transaction reads

T |

’ and writes.

>, When a transaction commits, all the updates it made must be written permanently into the database.

- All participants must commit unanimously, implying that the updates performed by the transaction are

made visible to other transactions in an ‘‘all or none’’ fashion. One of the most well-known techniques

for the atomic commitment is a protocol called wo-phase commit [SKE81], which works as the follow-

ing:

‘ In the first phase the coordinator sends "start transaction” messages to all the participants. Each partici-

pant individually votes either to commit the transaction by sending precommit message or to abort it by

:. sending abort message, according to the result of the subtransaction it has executed. If a failure occurs
during the first phase, consistency of the database is not violated, since none of the transaction’s updates
have y;:t been written into the database. In the second phase the coordinator collects all the votes and
makes a decision. If all votes were precommit, the coordinator sends "commit” messages to the partici-

- pants. If the coordinator had received one or more abort messages, it sends "abort" messages to the parti-

» cipants.

The standard correctness requirement for transactions is serializability. It means that the concurrent
, execution of a group of transactions is equivalent to some serial execution of the same group of transac-

| tions. For read-only transactions, correctness requirements can be divided into two independent classes:

the currency requirement and the consistency requirement.




The currency requirement specifies what update transactions should be reflected by the data read.

There are several ways in which the currency requirement can be specified; we are interested in the fol-

lowing two:

¢} Fixed-time requirement: A read-only transaction T requires data as they existed at a given time ¢.
This means that the data read by the transaction must reflect the modifications of all update tran-

sactions committed in the system before ¢.

) Latest-time requirement: A read-only transaction T requires data it reads reflect at least all update

transactions committed before T is started, i.e., T requires most up-to-date data available.

The consistency requirement specifies the degree of consistency needed by read-only transactions.

A read-only transaction may have one of the following requirements:

e))! Internal consistency: It only requires that the values read by each read-only transaction satisfy the

invariants (consistency constraints) of the database.

2) Weak consistency: It requires that the values read by each read-only transaction be the result of a
serial execution of some subset of the update transactions committed. Weak consistency is at least
as strong a requirement as internal consistency, because the result of a serial execution of update

transactions always satisfies consistency constraints.

3) Strong consistency: It requires that all update transactions together with all other read-only tran-
sactions that rcquire strong consistency, must be serializable as a group. Strong consistency

requirement is cquivalent to serializability requirement for processing of arbitrary transactions.

We make a few comments conceming the currency and consistency requircments. First, it might
scem that the intemal consistency requircment is too weak to be useful. However, a rcad-only transaction
with only intemal consistency requircment is very simple and efficient to process, and at least one pro-
posed algorithm [FIS82] does not satisty any stronger consistency requirement. Sccond, it is easy to see

that strong consistency is a stronger requirement than weak consistency, as shown by the following exam-

ple. Suppose we have two update transactions, T and T;, two read-only transactions, Ty and Ty, and two




data objects, X and Y, stored at two sites A and B. Assume that the initial values of both X and Y were 0

( A before the execution of any transactions. Now consider the following execution sequence:

T3 reads O from X at A.

s T ites 1 into X at A.
o 1 wn 0

A T4 reads 1 from X at A.

; T4 reads O from Y at B.

)

' P T, writes 1 into Y at B.

T; reads 1 from Y at B.

N The values read by T3 are the result of a serial execution of T,<T3<T;, while the values read by T, are

the result of a serial execution of Ty <T4<T,. Both of them are valid serialization order, and thus, the exe-
) cution is weakly consistent. However, there is no single serial execution of all four transactions, so the
execution is not serializable. In other words, both read-only transactions see valid serialization orders of

updates, but they see different orders.

Clearly, strong consistency is preferable to weak consistency. However, as in the case of intemnal
® consistency, it can be cheaper to ensure weak consistency than to ensure strong consistency. For the

: applications that can tolerate a weaker requirement, the potential performance gain could be significant.
n

. Finally, one might wonder why fixed-time requirement is interesting, since most read-only transac-
" tions may require information about the latest database state. However, there are situations that the user is

interested in looking at the database as it existed at a given time. For an example of a fixed-time read-only
9 transaction, consider the case of a general in the army making a decision by looking at the database show-
ing the current position of the enemy. The general may be interested in looking at the position of the
enemy of few hours ago or few days ago, in order to figure out the purpose of their moving. A read-only

¢ transaction of a given fixed-time will provide the general with the desired results.
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3. Execution of Logical Operations

In our algorithm, we use the notion of tokens to support a fault-tolerant distributed database in
increasing both the availability of data and the degree of concurrency, without incurring too much storage
and processing overhead. Each data object has a predetermined number of tokens. Tokens are used to
designate a read-write copy, and a token copy is a single version representing the latest value of the data

object. The site which has a token copy of a data object is called a token site, with respect to the data

object.

Multiversions are stored and managed only at read-only copy sites. For read-only copies, each data
object is a collection of consecutive versions. A read-only transaction does not necessarily read the latest
committed version of a data object. The particular old version that a read-only transaction has to read is
determined by the time-stamp of the read-only transaction (for the latest-time requirement) or by the
given time (for the fixed-time requirement). The time-stamp is assigned to a read-only transaction when it
begins, while the time-stamp for an update transaction is determined as it commits. When a read-only
transaction with time-stamp T attempts to read a data object, the version of the data object with the larg-

est ime-stamp less than T is selected as the value to be retumned by the read operation.

To simplify the presentation in this paper, we use a simple model of data objects, with only read and
write operations, instead of considering an abstracted data model. As discussed in [HER86], greater con-
currency among update transactions can be achieved if more semantic information about the specification
of each abstract data object is used. The algorithm presented in this paper can be easily adapted to use this

kind of semantic information of data objects.

In this paper, we do not consider Byzantine type of failures. When a site fails, it simply stops run-
ning (fail-stop). When the failed site recovers, the fact that it has failed is recognized, and a recovery pro-
cedure is initiated. We assume that site failures are detectable by other sites. This can be achieved either

by network protocols or by high-level time-out mechanisms in the application layer.

16~
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\ We assume that update transactions use two-phase locking [ESW76], with exclusive locks used for
'\ ¢ write operations, and shared locks for read operations. Lock requests are made only to token copies, and
X

':' there is no locks associated with read-only copies. In addition, update transactions use the two-phase
commit protocol and stable storage [LAM81] to achieve fault-tolerance to site failures. When a new ver-
’, ‘D sion is created, it is created at all copy sites, including read-only copy site. However, any new versions
i. are not accessible to other transactions until they are finalized through the two-phase commit protocol.
:_ Upon receiving the commit message from the coordinator, new versions of data objects createa by the
_' transaction replace the current versions at token sites, while they are attached to the multiple versions at
read-only sites.

:‘ Operations invoked by update transactions are processed using ordinary two-phase locking: when an
: update transaction invokes a read operation on a data object, it waits until it can lock the data object in
'IJ: shared mode. When an update transaction invokes a write operation, it locks the datz object in exclusive
i mode, and then creates a new version. If the transaction later aborts, the newly created version will be dis-
!. carded. Our algorithm follows the read-one/write-all-available paradigm [BHA86] in which a read lock
"E rcquest succeeds if at least one of the token copies can be locked in shared mode, and a write lock request
:; fails if at least one of the available token copies cannot be locked in exclusive mode. In a straightforward
, ° implementation of a write operation in this paradigm, the value to be written is broadcast to all sites
. where a copy of the data object resides. A physical write operation occurs at each copy site, and then a
i confimmation message has to be retumed to the site where the write operation was requested. The write
, operation is considered completed only when all the confirmation messages are retumned. This solution is
. unsatisfactory because every write operation incurs waiting for responses before the next operation of the

; transaction can proceed. In the next section, we present an algorithm that permits an operation after a
. write to proceed as in a nonreplicated system, with the physical write operations being executed con-
currently at other copy sites.

.
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4. The Algorithm

As noted above, our algorithm combines time-stamp ordering and locking. To generate time-stamps
for update transactions, a time-stamp is maintained for each data object. The time-stamp for data object X
represents the maximum of the time-stamps of update transactions that have accessed X and committed,
and the time-stamps of read-only transactions that have accessed X. Time-stamps for update transactions
are generated during the commit phase as follows:
In the first phase of the two-phase commit protocol, each participant attaches to the precommit message
the maximum time-stamps of all data objects that it accessed. Upon receiving precommit messages from
the participants, the coordinator chooses a unique time-stamp greater than all the time-stamps received.
This is the time-stamp for the transaction. Then, in the second phase of the commit protocol, this time-
stamp is broadcast to all participants (piggybacked on the commit message). Each participant, upon
receiving this message, updates the time-stamp of each data object to the maximum of its current value
and the received time-stamp, and releases any locks held by the transaction. Any version written by the
transaction is marked with the time-stamp of the transaction. Figure 1 shows the message passing
between the coordinator and participants. Note that time-stamps are piggybacked on the precommit and

commit messages, hence no additional messages are introduced here.

Fig. 1. Time-stamp generation for update transactions
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When a participant searches for the maximum time-stamp to attach to a precommit message, read-
only copies are also included in the set of copies for the search. By including the time-stamps of read-
only copies in determining the time-stamp for an update transaction, the system can ensure that any
potential conflicts between read-only transactions and the current update transaction are resolved in the

correct order of their time-stamps.

Time-stamp assignment for read-only transactions with latest-time requirement is quite different
from that for update transactions. When a read-only transaction begins, the coordinator sends messages to
the participants telling them the data objects the transaction needs to read. When a participant receives
such a request, it checks the current time-stamp of each data object at the site, and sends the maximum
time-stamps among them to the coordinator. Each data object accessed by a read-only transaction in this
way records the pair of the identifier of that transaction and the current time-stamp it reported. After
receiving responses from all participants, the coordinator chooses a unique time-stamp greater than all the
responses. The time-stamp recorded for the read-only transaction at each object is thus a lower bound on
the time-stamp of the transaction, and it will be used in making a decision to discard or retain versions of
the data object. For a fixed-time read-only transactions, time-stamp is provided by the user, and hence the

system needs not bother to assign a new time-stamp for it.

When a read-only transaction with time-stamp TS invokes a read operation on a data object, the par-
ticipant chooses the version of the data object with the largest time-stamp less than TS. This invocation of
read operation is nothing but sending the time-stamp TS to the participants, since each participant already
knows which data object to read. If TS is larger than the current time-stamp of the data object, it will be
updated as TS. This will force update transactions that commit later to choose time-stamps larger than

TS, ensuring that the version selected for the read-only transaction does not change.

Figure 2 shows the operation sequence for time-stamp generation and read request processing for
rcad-only transactions. The coordinator sends read requests for data object X and Y, each of which is

maintained as two versions stored at participants P; and P,. P; responds with time-stamp value of 15, and

-19-
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p P, with 20. The coordinator chooses a unique time-stamp (21 in this case), and sends it to each partici-

° pant. Time-stamps of the data objects (X; and Y?) are changed to 21 when read operation is completed.
/
It is easy to show that the above algorithm ensures strong consistency. The mechanism for generat-
ing time-stamps for update transactions ensures that any conflicting update transactions are ordered
| @
“ according to their time-stamps, and hence they are serializable in the time-stamp order. Read-only
i
)
® O ()

[ X1:10 Y1:12
. X2:15 ° Y2:20
[N

(a) read requests from the coordinator

o
|
/ X;:10 Y;:12
* 0 X,:15 Y2220
L
Xl 110 Yl 12
. X5:21 Y,:21
(¢) read operation with unique time-stamp
Fig. 2. Time-stamp gcneration for read-only transactions
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transactions then read versions of data objects consistent with all transactions executing in their time-

'( [ stamp order.
:‘ To achieve the high performance by reducing the cost of write operations in our algorithm, the level
; ; of synchronization between write operation and its physical implementation can be relaxed by allowing
. b physical write operations to be completed by the commit time of the transaction. A write operation is con-
5 sidered completed when the required update messages are sent. This eliminates the delay caused by wait-
| ; ing for confirmation messages before the next operation can proceed.
e
) To this point we have assumed that all versions are retained forever. We now discuss how versions
: can be discarded when they are not needed by read-only transactions. Recall that each data object keeps
_‘: ) track of the read-only transactions that have accessed the data object, along with a lower bound on the
; time-stamp chosen by each transaction. Data objects can use the following rule to decide which versions
: to keep and which to discard.
( j @ Rule for retention:
M
: A version with time-stamp TS must be retained if
. ° 1) there is no version with time-stamp greater than TS (i.e., current version), or
‘ ) there is a version with time-stamp TS’ > TS, and there is an active read-only transaction whose
;_ time-stamp might be between TS and TS’.
.,
’ By having a read-only transaction inform data objects when it completes, versions of data objects that are
no longer needed can be discarded. This process of informing data objects that a read-only transaction has
‘ completed need not be performed synchronously with the commit of the transaction. It imposes some
; overhead on the system, but the overhead can be reduced by piggybacking information on existing mes-
" sages. or by sending messages when the system load is low.
1)
2 When a read-only transaction sends a read request to an object, the read-only site effectively agrees
‘j to retain the current version and any later versions, until it knows which of those versions is needed by the
; -21-
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read-only transaction. When the read-only site finds out the time-stamp chosen by the transaction, it can
tell exactly which version the transaction needs to read. At that point any versions that were retained only
because the read-only transaction might have needed them can be discarded. By minimizing the time dur-
ing which only a lower bound on the transacuon’s time-stamp is known, the system can reduce the
storage needed for maintaining versions. One simple way of doing this is to have each read-only transac-

tion broadcast its time-stamp to all read-only sites when it chooses w.e time-stamp.

The version management described above is effective at minimizing the amount of storage needed
for versions. For example, unlike the "version pool" scheme in [CHA8S5], it is not necessary to discard a
version that is needed by an active read-only transaction because the buffer space is being used by a ver-
sion that no transaction wants to read. However, ensuring that each read-only site knows which versions
are needed at any point in time has an associated cost; a read-only transaction cannot begin execution

unul it has chosen a time-stamp, a process that requires communicating with all data objects it needs to

access.

Because the time-stamp for a fixed-time read-only transaction is determined by the user, the number
of versions that needs to be retained to process fixed-time read-only transactions cannot be bounded as in
the case for latest-time read-only transactions. In order to process all the potential fixed-time read-only
transactions, the system must maintain all the versions created up to the present, which may require huge
amount of storage. There are several altematives to keep a history instead of saving all the versions
created for each data object. One of the simplest and efficient altemative would be to keep a log of all the
update transactions. A transaction log is a record of all the transactions and the updates they performed.
Fixed-time read-only transactions can be processed by examining the log in reverse chronological order
until the desired version of the data object caa be reconstructed. Since fixed-time read-only transactions
must examine the log, their execution depends on the availability of the log, and their execution speed
would be slower than that of latest-time read-only transactions. One important advantage of the transac-

tion log mechanism is that in many systems the log is required anyway for crash recovery. Thus, in these

systems, keeping the log for fixed-time read-only transactions represents no real overhead.
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Performance of synchronization algorithms can be evaluated by several aspects: storage require-
ment, number of aborts, and average transaction response time. Storage requirement is proportional to the
number of versions to be maintained in the system. The algorithm presented in this paper achieves storage
reduction by two methods: token copies and version retention rule. The amount of reduced storage
requirement by introducing token copies is a function of the number of tokens for data objects and the
average number of versions to be maintained for each data object. For example, if two copies are token
copies for a four-copy data object with ten versions, we can save twenty versions for that data object.

Total reduction of storage requirement for the database is

N
Storage reduction = ¥, (number of token copies of data;) x (number of versions ot data;)

i=1
where N is the number of data objects in the database.

Version retention rule also contributes to the reduction of the number of versions by allowing the system

to maintain only those versions that will be used for read operations.

Read-only transactions are never aborted and their response time is reduced because they do not
nced to go through two-phase commit protocol. Furthermore, access requests from read-only transactions
do not require to access token copies, and hence no blocking is introduced by update transactions. This
results in further reduction of response time of read-only transactions. In general, the number of aborts
and average transaction response time for a given set of transactions depend on system parameters and
rcad-set/write-set of transactions, making analytical evaluation complicated. A prototyping tool tor exper-
imenting distributcd database systems is being developed at the University of Virginia, and a quantitative

evaluation of the proposed algorithm will be performed and reported in a separate paper.

5. Concluding Remarks

Replication is the key factor in making distributed systems more reliable than centralized systems.
However, if replication is used without proper synchronization mechanisms, consistency of the system

might be violated. In this paper, we have presented a synchronization algorithm for distributed real-time
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systems with replicated data. It reduces the time required to execute physical write operations when
updates are to be made on replicated data objects, by relaxing the level of synchronization between write
operations on data objects and physical write operations on copies of them. At the same time, the con-
sistency of replicated data is not violated, and the atomicity of transactions is maintained. The algorithm
exploits the multiple versions of a data object and the semantic information of read-only transactions in
achieving improved system performance. The algorithm also extends the notion of primary copies such
that an update transaction can be executed provided at least one token copy of each data object in the
write set is available. The number of tokens for each data object can be used as a tuning parameter to
adjust the robustness of the system. Multiple versions are maintained only at the read-only copy sites,

hence the storage rcquirement is reduced in comparison to other multiversion mechanisms(REE83,

CHAB8S].

Reliability does not come for free. There is a cost associated with the replication of data: storage
requirement and complicated control in synchronization. For appropriate management of multiple ver-
sions, some communication cost is inevitable to inform data objects about activities of read-only transac-
tions. There is also a cost associated with maintaining the data structures for keeping track of versions and
time-stamps. In many real-time applications of distributed databases, however, the cost of replication is
justifiable. Further work is clearly needed to develop alternative approaches for maintaining multiversions

and exploiting semantic information of read-only transactions, and to study performance of different

approaches.
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The StarLite Prototyping Architecture

1. Introduction

The goal of the StarLite project is to test the hypothesis that a host prototyping environment
can be used to significantly accelerate our ability to perform expcriments in the arcas of operating
systems, databases, and nctwork protocols. This paper discusses the requirements for an
architecture to support software prototyping and the current StarLite implementation. The
requirements suggest an architecture quite differcnt from the RISC architectures currently in
vogue. However, the resulting interpreter has characteristics that make it ideally suiied to
execute on current RISC machines.

The primary project requirement for StarLite is that software developed in the prototyping
environment must be capable of being retargeted to different architectures only by recompiling
and replacing a few low-lcvel modules. The anticipated benefits are fast prototyping times,
greater sharing of software in the rescarch community, and the ability for one research group to
validate the claims of another by replicating experimental conditions exacdy.

The components of the StarLite project include a Moaula-2 compiler, a symbolic debugger,
an interpreter for the prototyping architecture, and a visual simulation package. The compiler
and interpreter are implemented in C for portability; the rest of the software is in Modula-2. The
prototyping cnvironment has been used to develop a non-proprietary, UNIX-like operating
system that is designed for a multiprocessor architecturc, as well as to perform experiments with
concurrency contre! algorithms for distributed database systems.

As one measure of the effectiveness of the environment, it is often possible to fix errors in
the operating system, compile, and reboot the StarLite virtual machine in less than twenty
seconds. The compilation time on a SUN 3/280 for the 66 modules (7500 lines) that comprise
the operating system is one minute (clock) or 16 scconds (user) time. The StarLite VM, as
mecasurcd by Wirth’s Modula-2 benchmark program{1], executes at a speed of from one to six
times that of a PDP 11/40, depending on the mix of instructions.

2. Architectural Requirements for Prototyping

The StarLite prototyping architecture is designed to support the simultaneous execution of
multiple opcrating systems in a single address space. For example, to prototype a distributed
operating system, we might want to initiate a file server and several clients. Each virtual machine
would have its own operating system and user processes. All of the code and data for all of the
virtual machincs would be cxecuted as a single UNIX process.

In order to support this requircment, we assume the cxistence of high-performance
workstations with large local memorics. ldeally, we would prefer multi-thread support, but
multiprocessor workstations are not vet widely available. We also assume. that hardware details
can be isolated behind high-level language interfaces to the extent that the majority of a system's
software remains invariant when retargeted {rom the host to a target architecture.

The architectural requirements o be satistied by an interpreter that supports multiple
operating systenmis running in a single, large address space are interesting. They include high
speed, compact code, exception handling, good crror detection, demand loading, dynamic restart,
fast context switches, hybrid exccution modes, and portability.

In the following scctions, we will justily our requirements.
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High Speed. Obviously, the spced of the host architecture is a determining factor in the
usefulness of any prototyping cffort. Prototyping is most effective for logic-intensive programs,
such as operating systems, because the ratio of code 1o code-executed-per-function is high. For
example, running user programs at the shell level on top of the prototype operating system, which
is running on an interpreter, provides a response-level comparable (several seconds ) to a PDP-11,
As the number of users increase or as the number of data-intensive applications increase, the
response time increases considerably. Data-intensive programs tend to apply a large percentage
of their code to each data point. Thus, the number of data points determines execution speed. In

many cases, having fast machines is the only cffective way to prototype data-intensive
applications.

Since the StarLite system uses an interpreter to define its virtual machines, we tend to stay
away [rom data-intensive test programs. It would be nice to have an execution speed comparable
to a bare machine, but that could only be achieved by building a software prototyping

workstation. For now, we are satislicd as long as the edit-compile-boot-and-test cycle is
significantly faster wnan any other environment.

The interpreter is implemented as a single procedure to take advantage of C’s register
declaration. For example, an earlier version of the interpreter used static variables for the

registers. The conversion to register variables improved performance by a factor of three on a
SUN 3/280.

Since the SUN 3/280 is bascd on the M68020, the number of virtual machine registers that
could be assigned to hardware registers was limited to three. Above that number, performance
started to drop off as the C compiler generated extra code to compensate for the reduction in
usable registers. In current RISC machines, such as MIPS or the SUN 4, this limit would not be a
problem. The use of multiple registers, and the lack of context switches, as well as a minimal

number of procedure calls should enable the interpreter to take full advantage of the
characteristics of these processors.

The StarLite architecture is a 32-bit extension of Wirth’s Lilith architecture{1], which in
tumn is a descendent of the Xerox Alto processor. It is also a contraction. For instance, the Lilith
uses an evaluation stack of registers with . hardware stack pointer and no overflow/underflow
checking. This is a good idea in a hardware implementation; howsver for the prototyping
architecture, it would result in memory-to-memory copies of the evaluation stack on procedure

calls and context switches. Therefore, we modified the architecture to support a pure stack model
of execution.

The instruction strcam is byte-coded and there are no highly encoded instructions. As a
result the physical interpretation is fast; for example, the interpreter’s main loop is 5 instructions

on a M68020. This could be reduced to two instructions by generating threaded code but that
would negale the portability goal.

With an interpreter, the instruction sct architccture can assign lots of functionality to each
instruction. This has two advantages. First, the function is executed in hardware, which makes it
fast. Sccond, the overhead of multiple passes through the interpretation loop is saved. The

instruction sct has been carefully tuned by analyzing all of the system code for the Lilith
environment and by using the Xcrox analysis[2] of Mcsa.

The StarLite cnvironment actually supports a family of architectures for which the
interpreters have different characteristics. For example, adding a single-step trace option costs
three additional instructions per loop. In another version, the vinwal clock is driven by
instruction exccution (1 tick per 100 instructions). Having the clock regulated by instruction
exccution is advantageous for optimizing code and experimenting with real-time systems;
however, it costs an additional three instructions per loop.




Another version of the architecture was crecated just to support the UNIX "fork" operation,
which requires dynamic relocation on data references. This feature does not slow the
interpretation loop but rather it has an effect on every instruction that loads or stores data. It is
possible to continue increasing the degree of detail in the interpreter until a level equivalent to
IBM's VM emulation{3] is achieved. However, this results in a significant decrease in execution
speed. It also has the further disadvantage of focusing the programmer’s attention on hardwarc
details at the expense of further refinements in system abstractions.

Compact Code. The generated code for the StarLite architecture is extremely space
efficient since it is based on the Lilith design. For example, the object code (.0 file) sizes for a
sample 1,000 line program were SUN3-Modula2(130K), SUN3-C(65K), PC286-C(35K),
StarLite-Modula2(11K). Compact code has a significant effect on the speed with which the
environment can load both system components and user-level programs that might run on those
components. Compactness also increases cache locality, reduces page faults, and maximizes the
quantity of software that can be co-resident in the prototyping system.

Exception Handling. Thc benefits of exception handling support for large system
development have alrcady been documented by Rovner{4).

Error Detection. The benetits of integrity checking for an architecture’s primitive
operations have been discussed by Wirth{S]. The StarLite architecture supports checks for
overflow/underflow, division by zero, subrange and subscript checking, NIL pointer checks,
illegal addresscs, and stack overflow. Subrange and subscript checks are generated by the
compiler. The other faults should be detected by the underlying C runtime. If not, we use the C
compiler’s "-a" option and then modify the assemblcr output with an editing script.

Demand Loading. The StarLite architecture supports demand loading; that is, modules are
loaded at the point that one of their procedures is called. Thus, a large software sysiem begins
cxecution very quickly and then loads only the modules that are actually referenced. For
example, one version of the operating system defers loading the file system, or even the disk
driver, until a filc opcration is performed.

Achicving this requircment was complicated by the format of module initialization code. In
Modula-2, the initialization procedures for all imported modules must be invoked prior to
cxecuting the initialization code for the impornting module. Without some care in the architecture
definition, all modules would be demand loaded as soon as a program module began execution,
which would negate the benefits. The solution is described in Section 2.1.4, )

At the current time, a linker is supcrfluous; as soon as a module is compiled, it may be
exccuted. Demand loading and the absence of linking greatly cnhances the efficacy of the
StarLite debug cycle. The only limit on debugging is how fast the programmer can discover bugs
and type in the changes.

Dynamic Restart. When debugging soltware, it can be annoying to discover an error,
rcturn to the host level, compile, and then run the system to the point of crror only to discover
another silly mistake. The StarLite architecture is designed so that an IMPLEMENTATION
module can be compiled in a child process while the interpreter is suspended. That module can
be reinscricd into memory and the system restarted.

Another dynamic restart feature supports the cmulation of partial failure as might be
experienced in a distributed system. The Modula-2 compiler does not attempt to statically
initialize any data arca. Thus, any module, or sct of modules, can be dynamically restarted at any
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N time without reloading the object modules from disk. For a distributed system, the user can
W induce virtual processor failures and then "bring up"” the operating system on those nodes without
( e loading any software from disk.

E
- Fast Context Switches. Unlike the "high-speced” requirement, achieving a fast context
: : switch time can be realized independent of the characteristics of the host machine. For example,

N there are no context switches within the interpreter, which is basically a C procedure in a closed
N~ loop. Theretore, a host architecture with a slow context switch time has no effect on the
. R interpreter’s context switch time; it is only a function of the state information that must be saved

and restored. This is an important requirement as a typical operating system "run” can involve
& thousands of context switches.

- The StarLite architecture specifies only a single register (P) per thread. The additional state
o information (described later) is located in the thread’s stack. Whether or not the additional state
3w information is implemented as registers or is left on the stack is an implementation decision. For

example, a machine with a well-matched caching strategy could support an implementation that

‘.\ left the state on the stack and uscd P as a base register. The result would be a context switch that

N involved only changing P registers. On the other hand, if the state information were copied into
) C register variables 1o improve performance, a context switch would involve register save/restore

. operations. Each implementation of the architccture must be balanced to match the
‘ P characteristics of the host machine. The current SUN 3/280 interpreter executes 200,000
5N coroutine transfers/sccond. On the other hand, the IBM PS2/50 interpreter executes at 10,000
\ : transfers/sccond.

" Hybrid Execution Modes. In a prototyping cnvironment, it is advantageous to use
b ° scrvices that already exist in the host cnvironment. For example, it is possible to "mount” the

host file system on a leaf of a prototyped file system, or cven as the prototype’s "root” file system.
Another example would be to usc the host’s database services.

Yet another example occurs in situations where the prototype would execute partially in the
host and partially in a target system. An illustration of this case would be the use of a physical
disk scrver by an operating system running in the host prototyping environment.

The keys to hybrid execution are architectural support and the definition of interfaces that
remain invariant to changes in implementation techrology. For example, the following interface
is used in the operating systen.

R WS
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", PROCEDURE Load(VAR programName : ARRAY OF CHAR):BOOLEAN;

It is used by the "exec” system call to load uscr programs into memory. The interface "hides”
implementation details such as the existence of a prototype file system or the virtual memory
architecture. This "information hiding" principle is also used in designing device interfaces. As
a result, the operating system never knows whether devices, such as disks, or services, such as
"Load", are real or arc emulated.

- s
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In the casc of "Load", for example, it is included in the architecture’s collection of VM
ROM routines. If the user does not supply a "Loader” module, the one in VM ROM will be used
instcad. A VM ROM routinc has a DEFINITION module but its implementation is part of the
interpreter. VM ROM can be used to provide functionality that the prototype software does not.
For example, when prototyping an operating system to cxperiment with file system issues, it is
not necessary to worry about program management; VM ROM routines can be used to take care
of the details.
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It is easy to add additional packages to the VM ROM interface. The disadvantage is that all
ROM packages, which are written in C by the way, must be co-resident with the interpreter. In a
future version of StarLite under IBM’s OS/2, all of the ROM packages will be dynamically
linked on demand.

Portability. One of the benefits of developing systems in the StarLite cnvironment is that
the code can be shared with other researchers. To facilitate sharing at the object code level, the
instructions generated by the compiler and its object module format are canonical. That is, the
byte ordering is fixed, as is the character code (ASCI), and the floating point format (IEEE). If
the host has different conventions, the compiler performs the conversions as it generates code.
To the extent that an implementation module is machine invariant, it should be possible to
transmit object modules from one site to another and to have them work.

The StarLite operating system design project is experimenting with the use of "safe"{4],
canonical object modules for user-specitied line and protocol filters, schedulers, and application-
specific file systems. For example, the operating system stores method descriptions for file access
in the canonical object code format. The advantage of a canonical representation is that the
volume can be transported to a different machine, which could then interpret the access method to
manipulate the volume.

3. The StarLite Architecture

The StarLite architecture extends the Lilith design to satisfy the requirements for
prototyping. It supports the INTEGER, CARDINAL, LONGINT, REAL, PROCEDURE, and
BITSET types and includes modifications to the coroutine structure. This section first describes
the components of a coroutine, which is the fundamental building block for emulating various
processor configurations. Sccondly, the instruction set architccture is explained. Following
Wirth[ 1], the definitions are in Modula-2.

3.1 The coroutine structure

A coroutine, or thread, in the StarLite architecture consists of state information, code,
global data, and a stack. Coincidentally, this is the model supported by most implementations of
UNIX. A coroutine is defined as follows:

TYPE
Corouuine =
xState : ExecutionState;  (* where execution is/was *)
interruptMask : BITSET; (* 1 is cnabled *)
interruptVectorPointer : plnterrupt;
topO(StackPointer, stackLimitPointer : pStack:
dataFrameTablePointer : pDataFrameTable;  (* one base register/module to locate global data *)
modulelnfoTublePointer : pModulelnfoTable; (* describes loaded modules *)
evenunfo : EventDescription; (* reason for the latest internal/external trap *)
bottomFrame : Frame; (* describes the base of the procedure activation record stack *)
END; (* Coroutine *)

Stack = ARRAY [0.MAXSTACK] OF WORD; (* generic area in a coroutine's stack *)
pStack = POINTER TO Stack;

The coroutine structure is designed for fast context switching. A context switch can be
accomplished by cxchanging two coroutine pointers.  Unfortunately, leaving all the state
information in a corouting's stack can signilicantly slow exccution on some architectures.
Therefore, some cxperimentation is necessary cach time the interpreter is ported to determine a
good balance between context-switch time (all registers in the coroutine record) and exccution
speed (some/all registers in C register variables).
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The standard portion (relative to most other architectures) of the state information in the

coroutine record contains the current instruction position (xState), top-of-stack and stack limit

® pointers, an interrupt mask, and a "bottom" frame that "marks" the base of the procedure
activation record stack.

The non-standard components of the coroutine record are the event descriptor (eventInfo)
and the pointers to the interrupt vector, data frame and module information tables.

3.1.1 The interrupt vector

By using an interrupt vector pointer, all coroutines can share the same trap/interrupt vector
or the coroutines can be pantitioned to use different vectors. As a result, it is possible to emulate
a multiprocessor or distributed processor architecture by changing the InitCoroutine procedure.
This can be accomplished without modifying the interpreter. It also means that the interpreter is
unaware and unaffected by the number of virtual processors that higher-level software creates.

o The interrupt vector, which also handles exceptions, is implemented as an array of pointers
to coroutines. An interrupt, then, is just a Modula-2 “"transfer” operation on two coroutines, the
one executing and the one identificd by the appropriate vector entry. At the present time, entry
zero is for the system clock interrupt and entry one is for program faults. Other interrupt options
that we considered (but rejected) were procedure variables and semaphores. Both choices had
disadvantages that the use of coroutines avoided.

With respect to exceptions and interrupts, there is a somewhat symbiotic relationship
between the interpreter and the operating systems that live on top of it. For example, a procedure
return from the "bottom” frame raiscs the "normal ¢xit” exception.

If the interrupt vector entry for this exception is NIL, the interpreter terminates the "booted"
program. In a bare machine, there is nothing "undcmeath” so a NIL vector location induces a
Y machine fault. However, the StarLite VM is not "barc” so it implements reasonable actions for
what would otherwise be unrccoverable crrors in hardware. At the VM level above the
interpreter, the prototype operating system handles the "normal exit" exception by executing an
"Exit(0)" system call on behalf of the process.

TYPE
® Interrupt = ARRAY {0.MAXINTS] OF pCoroutine; (* Trap/interrupt vector *)
plnterrupt = POINTER TO Interrupt; (* part of state information *)
EventDescription = RECORD (* records why a process is handling an exception/event *)

cventCode : CARDINAL; (* Possible values - normal, halted, caseerr, stackovf, heapovf, functionerr,
addresserr, realovf, realunf, badoperand, cardinalovf, integerovf, rangeerr,
dividebyzero, illegalinst, breakpnt, singlestep, missingmod *)
eveniSuing : ARRAY [0.MAXMSG] OF CHAR,;
END; (* EventDescription *)

3.1.2 Event processing

The "eventnfo” ficld in the StarLitc coroutine record provides integrated support for

. exception handling in the architecture. Other Modula-2 systems{4) have modified the language to
support ¢xception handling; we provide similar funcuonality, but not the syntax, via an Exception

module implemented in Modula-2. We use the terms "catch” 1o refer to the establishment of a

handler and "raisc” to refer to the action when an exception is detected. The modifications to the

Lilith architecture involved adding an exception handler pointer cell to cach activation record,

adding a RESTORE instruction to restore the context for a handler, and adding the event ficlds to
P the coroutine record.
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The StarLite architecture is somewhat unique in its handling of exceptions, or events at the
architectural level. First, an exception may be raised in threce ways. It may occur through
program execution, such as for division-by-zero, through the exccution of the Exception.Raise
procedure, or through the intervention of another coroutine. The first two methods are traditional;
the latter is not.

There are two rcasons for providing support in the architecture for inter-coroutine
exceptions. First, some exceptions, such as stack overflow, may not be appropriate for the
executing coroutine to "catch”. If it has corrupted its stack, it may not continue execution safely.
Every coroutine has a "more trustworthy” coroutine to "catch” its exceptions. The "most
trustworthy" catcher is the interpreter, which intervenes for NIL vector entrics.

The sccond reason is that inter-coroutine exceptions are a good way to "back” a coroutine
out of a module hierarchy where it holds locks or other resources. For instance, the operating
system’s "kill" implementation could use this technique by sending a "kill" exception to an
operating system thread exccuting a system call on behalf of a user. When the thread "catches”
the exception, it must exit cach module that it was executing and release any allocated resources.

The problem with inter-coroutine exceptions is what to do when multiple coroutines
perform a "raise” operation on the same victim. In the StarLite architecture, when the eventCode
is set to non-zero, an exception is raised atomically with respect to any other exception for a
given coroutinc. When a handler sets the cell back to zero, the atomic action has completed and
other exceptions can be raised. If a coroutine generales or attempts to raise an exception while in
this mode, it is killed. The rationale is that the handler is supposed to be "more trusted"; if it
fails, the program is in trouble.

The eventString ficld was introduced to reduce the need for a plethora of routines to invert
error codes to sensible messages. It is intended to be used for the error message that matches the
eventCode: however, the field can also be used for path names of error message files or for data.

3.1.3 Module storage

The StarLite architecture, which is based on Winh's Lilith architecture, is designed to
manage the storage for modules. The prototyping environment is designed to support debugging
modules of code. Data storage is not yct an issuc since we assume that the host workstation’s
virtual, if not physical, memory is sulficicnt to storc a system while it is being prototyped.

The data frame table (DFT) is the focal point of all inter-module addressing, both for data
and code. The DFT is indexed by module number. All variables and procedures external to a
module are addressed via a modulc-number/offsct pair. For variables, the offset is the data
address. For procedures, the offset is the procedure number within its module. Loading a
module, then, involves placing its code and data in memory and rcplacing the references to
external module numbers with their DFT indices.

The data {rame table (DFT) has one entry for cvery linked module. As with interrupt
vecters, there can be as many DFTs as nceded to cmulate multiprocessor or distributed
architectures. Each DFT cnury contains cither the pointer to the data structure for a loaded

module, a marker that indicates a linked, but not loaded, module, a marker that indicates an
unuscd entry, or an "extraCodc” marker.

The "extraCode” marker tdentifics a routine, such as InOut, that is stored in VM ROM.
References to an "extraCode™ module are intercepted by the interpreter and are directed to C
routines. The ROM fcature suppornts the creation of prototypes that execute in hybrd mode,
some parts arc in VM and some pans are in VM ROM. Any function available to a C program on
the host operating system is available by the use of the VM ROM technique.
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The following definition describes the storage structure for a loaded module. Each DFT
entry contains the base address of the global data area for a module. As mentioned earlier, the
only static data gencrated by the compiler are string constants, which are located by a pointer
cell. The initialization flag is set by a test-and-set instruction when a module’s initialization code
is executed. The scuing of the flag indicates that the initialization code is being executed. To
dynamically restart a module, it is only nccessary to reset this flag and the module will repeat its
initialization sequence. The code pointer locates the code vector associated with a module. The
code vector contains a vector of offsets to the code bytes for each of a module’s procedures,
followed by the code bytes.

TYPE
pDataFrameTable = POINTER TO DataFrameTable; (* part of the state information *)
DataFrameTable = ARRAY [0.MAXMODS] OF pModule; (* identifies the code/data for loaded modules *)

pModule = POINTER TO Module;
Module = RECORD

codePointer : pCode; (* locates the code for a module *)
initializedFlag : LONGINT,; (* sct to non-zero when module initialization begins *)
stringPointer : pStringArca; (* pointer to the static data area where string constants are stored *)

globalData: ARRAY [0.MAXGLOBALS] OF WORD; (* global data (includes string constants) *)
END; (* Module *)

pStringArea = POINTER TO StringArea;
SuingArea = ARRAY [0. MAXPROGRAMSTRINGS] OF CHAR; (* constants generated by compiler *)

pCode = POINTER TO Code;
TwoViews = (OffsetView, CodeByteView);
Code = RECORD
CASE :TwoViews OF
OffsctView:
codeQffsets : ARRAY [0.MAXPROCS) OF CARDINAL; (* offsels to the code for each procedure *)
|
codeBytes : ARRAY [0.MAXCODEBYTES] OF Opcodes; (* instructions for a module’s procedures *)
END; (* case *)
END; (* Code *)

pModulclnfoTable = POINTER TO ModulelnfoTable;
ModuicInfoTable = RECORD (* tdentifics all referenced modules *)
name : ARRAY [0.MAXNAME] OF CHAR; (* the module’s name *)
key : ARRAY [0.MAXKEY] OF CARDINAL; (* timestamp of the corresponding DEFINITION part *)

modNo: [0.MAXMODS]; (* identifies the DFT entry assigned to the module *)
codeSize : CARDINAL; (* the size of Code *)
dataSize : LONGINT; (* the size of Module *)

END; (* ModulelnfoTable *)

The module information table (MIT) is defined as part of the architecture in an effort to
keep the debugger’s code independent of the structure of the software being prototyped. The
table is also usced by the routine that implements demand loading. As described carlier, if the
vector entry for the "missingmod"” cxception is NIL, the interpreter invokes an extracode routine
t0 load the module with a "name" and "kcy" that matches the module refcrenced by the
instruction. The module number from the instruction can be inverted to an MIT entry by a lincar
scarch.

3.1.4 Procedure activation records

There are four classes of procedure activation rccords: coroutine start, locai call, inter-
module call, and dynamic initializaton call. Coroutine-start is used as a marker for the bottom
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frame when InitCoroutine creates a coroutine. The local-call case contains the standard static and
dynamic links and a saved PC value. For an inter-module call, the module number of the caller is

@ saved. When a procedure return occurs, the G value is sulficient to retrieve the base addresses of
both the global data area and the code vector.

Finally, the dynamic-initialization case, which is new to StarLite, is used for demand
loading. The initialization code for cach module contains a call to the initialization procedure (0)
for every imported module. For demand loading to work, these calls are treated as NOPs.

® Otherwise, all modules would be loaded as soon as the program module executed its initialization
code.

As a result, when an extemal variable or procedure (other than zero) is referenced and the
DFT entry is marked as loadable, the module must be loaded and initialized. The initialization is
initiated by "faking" a procedure call at the point of reference. The dynamic-initialization marker
indicates this special case. Also, since the "missingmod" exception leaves the PC at the

P instruction that gencratcd the fault, it will be restarted when the initialization completes.
TYPE
Frame = RECORD (* format for a procedure’s activation record *)
xState : ExccutionState; (* where execution was *)
handler: ADDRESS; (* address of the exception handler for this frame *)
localData : Stack; (* space for a procedure’s local variables *)
‘. END:; (* Frame *)

StateViews = (CoroutineStart, InterModuleCall, Dynamiclnitializaton, LocalCall);

ExccutionState = RECORD (* used 1o start/restart execution and to rerurn from a procedure *)
CASE :StateViews OF
CoroutineStart:
Py |
[nterModuleCall, Dynamiclnitialization:
G [0.MAXMODS+256); (* number of calling module; G&100 => dynamic initialization *)
|
LocalCall:
staticLink : POINTER TO Frame; (* L register (statically) of the calling procedure *)
END; (* case *)
L : POINTER TO Frame; (* back link to the frame for the caller; dynamic link *)
L PC: CARDINAL; (* PC=FFFF => the bottom {rame; PC&8000 => marks an intermodule call *)
END; (* ExccutionState *)
4. The Instruction Set Architecture
In this scction, we outline the StarLite c¢xtensions to the Lilith architecture. For those
-

interested in more detail, Appendix A presents a system consisting of two modules, together with
a decoding of the object module for cach. Furthermore, there is a memory snapshot that
illustrates the "main” coroutine’s data structurcs. The snapshot shows the program state at load
time, during dynamic initialization following a demand load, and during a nested procedure call.
The instruction format of the StarLite architecture is identical to that of the Lilith and is
- illustrated in Figure 1. ES relers to the evaluation stack, which for StarLite is just the top of

stack. F refers to the base of a module’s code vector. Figure 2 lists the op code and function of
cuach instruction.

As mentioned previously, StarLite is a purce »'ack architecture, while the Lilith is not. Thus,
instructions were added to handle argument passing and procedure retum. For example. a
retum-and-pop-arguments instruction was delined. For portability, we added instructions to 1oad
cach constant type. As a result, differences in byte ordering or representation can be handled by
the interpreter while leaving the compiler free to define a canonical object format.
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® QPCODE
opP A
®
|O§;ODE B
®
IOPQODE _C
B OPCODE M N
LOPCODE D
®
MODE EFFECTIVE OPERAND
Stack : (ES++), operands are on the evaluation stack
Immediate : A(-1..15), B(0..255), C(16 bits), D(32 bits)
6 Procedure Local : (L)+A) or ((L)+B)
Module Global : ((G)+A) or ((G)+B)
External Module : ((ModuleFrameTable[M])+N)
Indirect : ((ES++))
Indexed with NIL check : ((ES++)+A) or ((ES++)+B)
- Aligned Index with check : ((ES++)*ElementSize + (ES++))

String constant :
PC Relative :

(((G)+2)+B)
FE)+PC)+B or (F)+(PC)+C

Figure 1. The StarLite Op Code Format and Addressing Modes
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11
12
13
14
15
16

17

20
21

-~

22

e

23
24
25
26
27

30
31
32
33
34
35
36
37

LIO
LIl
LI2
LI3
LI4
LIS
LI6
LI7

LIS

LI9

LI10
LI11
LI12
LIi3
LI14
LI15

LIB
LIR
LIW
LID
LLA
LGA
LSA
LEA

JPC

JP
JPFC
ILL
JPBC
JPB
ORJP
ANDIJP

40

LLW
LLD
LEW
LED
LLWO
LLWI1
LLW2
LLW3

LLW4
LLW5
LLW6
LLW7
LLW3
LLW9
LLW10
LLWI11

SLW
SLD
SEW
SED
SLWO
SLW1
SLW2
SLW3

SLW4
SLW35
SLW6
SLW7
SLWS
SLWS
SLWI10
SLWI1i

100

LGW

LGD

LGW2
LGW3
LGW4
LGWS5
LGW6
LGW7

LGW8

LGW9

LGW10
LGW11
LGW12
LGW13
LGW14
LGW15

SGW

SGD

SGW2
SGW)
SGwW4
SGW5
SGW6
SGW7

SGW§8

SGW9

SGW10
SGW11
SGW12
SGW13
SGwW14
SGWI15

140

LSWO0
LSW1
LSwW2
LSW3
LSw4
LSW5
LSW6
LSW7

LSW8

LSW9

LSWI10
LSWI1
LSW12
LSWI13
LSW14
LSW15

SSWO
SSW1
SSw2
SSW3
SSw4
SSW5
SSW6
SSW7

SSW8

SSW9

SSW10
SSWI11
SSW12
SSW13
SSW14
SSW15

200

LSW
LSD
LSDO
ILL
LSTA
LXB
LXW
LXD

DADD
DSUB
DMUL
DDIV
CDBL
DCMP
ILL
ILL

SSwW
SSD
SSDO
ILL
TS
SXB
SXW
SXD

FADD
FSUB
FMUL
FDIV
FCMP
FABS
FNEC
FECT

Figure 2a. Op Code Table

240

REST
ILL
DNEG
DMOD
DABS
UCHK
ROT
SYS

ILL
ILL
ULSS
ULEQ
UGTR
UGEQ
ILL
ILL

SPW
SPD
RTNS
LSSA
LSSAC
COPD
DECS
PCOP

UADD
USUB
UMUL
UDIV
UMOD
ILL
SHL
SHR

300

340

FOR1 MOV
FOR2 CMP
ENTC ILL

EXC

ILL

TRAP ILL

CHK

ILL

CHKZ ILL
CHKS ILL

EQL
NEQ
LSS

LEQ
GTR
GEQ
ABS
NEG

OR
XOR
AND
COM
IN
LIN
ILL
NOT

ADD
SUB
MUL
DIV
ILL
BIT
NOP
ILL

GB
GB1
ALOC
ENTR
RTN
CX

CI

CF

CL

CL1
CL2
CL3
CL4
CL5
CL6
CL7

CL8

CL9

CL10
CL11
CL12
CL13
CL14
CL15




Figure 2b. Op Code Definitions

Op Format Traps

ADD SUB MUL DIV NEG ABS
stku, tovf, idivz

DADD DSUB DMUL DDIV DNEG DMOD DABS
stku, dovf, ddivz

DCMP stku
EQL NEQ LSS LEQ GTR GEQ
stku

FADD FSUB FMUL FDIV FNEG FABS

stku, fovf, funf, fdivz
FCMP stku
FFCT byte stku, stko, fsig

OR XOR AND COM stku
UADD USUB UMUL UDIV UMOD
stku, covf, cdivz

ULSS ULEQ UGTR UGEQ

stku
ALOC card,byte  stko
ANDIJP byte stku
BIT stku, covf
CDBL stku, stko
CF byte stko, missm, ilcall
CHK stku, subrange
CHKS stku, sign
CHKZ stku, subrange
CI byte-pn stko, ilcall
CL byte-pn stko, ilcall
CLi stko, ilcall
CMP stku, iladr
COPD stku, stko
CX mn(8),pn(8) siko, missm, ilcall
DECS stku
ENTC card stku, case
ENTR byte stko
EXC stku, iladr
[FOR1 byte,card  stku, iladr
FOR2 step-sbint  siku, tladr, iovl
GB byte stko, iladr

Operation

INTEGER
> (popl6), >, < (pushl6), + - * DIV u- ABS
LONGINT
>>,>>, << (push32), + - * DIV u- MOD ABS
if>>r>>then<<, =00,1ss01,gr 10
INTEGER
if>r>then<lelse<0
REAL
>>, >>, <<, + - * [/ u- ABS
if>>r>>then<<, =00,1ss01,gtr 1 0
b=0 FLOAT(LONGINT) b=1 TRUNC(LONGINT)
=2 TRUNC(REAL) b=3 LONGINT(CARDINAL)
b=4 FLOAT(CARDINAL)
BITSET,>,>, | xor & ~
CARDINAL
>,>,<, + - * DIVMOD
CARDINAL
if>r>then<lelse<0
inc stack by ¢ words; (L+wrdOffst b+frameSz):=adr
if>#0thenPC+=1else<0; PC+=b
>i, < 2%¥
convert top of stack from INTEGER to LONGINT
like CX; the 16-bit mn,pn is b+1 wcrds below §
>b, >a, >1, if (i Iss a) or (i gtr b) then err else <i
>i, if i less O then err else <i
>b, >1, if i > b then err else «i
call local-proc b; like CL but uses >> as static link
call local-proc b; L,S=new frame; handler=NIL;
staticL=oldL; L=oldL; PC=return offset in Code
call local-proc i; L,S=new frame; handler=NIL;
staticL=oldL.; L=oldL; PC=return offset in Code
>i, >>s, >>d, cmp i words of (d) and (s) = <1 # <0
>>i, << i, <<i
call ext m, proc p; saves G for caller; checks xCode
>
>cs, PC += ¢, next 2 wrds are lo,hi limit on all cases
if (cs ge lo)&(cs le hi) PC += then (cs-10+3)*2 else 4
PC += INTEGER(next 2 words)
inc stack by b words for local variables
>byte offset, PC=F+b
>limit, >initial value, >>variablcAdr
if (b=0) and (init leq lim) or (b=1) and (init geq lim)
(vadr):=init; <<vadr; <lim
else PC +=¢
>limit, >>variableAdr
if (sb geq 0) and (*vadr+sb leq lim) or
(sb Iss 0) and (*vadr+sb geq hm) then
*vadr +=sb; PC +=inl; <<vadr; <him
clse tall through the loop
<< the static link b levels back, L if b=0




Op Format  Traps Operation

GB1 stko, iladr << LAstaticLink
A o ILL ilinst illegal op code
IN stku, covf >bs, >in, if bs & > 2**in then< L else < 0
Jp integer PC +=1
JPB byte PC-=b
JPBC byte stku if>=0thenPC-=belse PC+=1
, JP(F)C byte/card  stku if > = 0 then PC += b/c else PC += 12
" ) LEA byte-m,byte stko, missm, iladr << dft{m] + 8-bit word offsct
L(S)ED byte-m,byte stku, stko, missm,iladr <</ >> (dft[m] + 8-bit word offsct)
L(S)EW byte-m,byte stku, stko, missmiiladr < /> (dft[m] + 8-bit word offset)
LIB byte stko < zero-extended byte
LID longint stko << LONGINT
Ll stko < zero-extended i
. PY LIN stko <-1
LIR real stko << REAL
LIwW 16bits stko < 16 bits
LGA byte stko << G + 8-bit word offset
L({S)GD byte stko, stku << />> (G + 8-bit word offset)
L(S)GW byte stko, stku < /> (G + 8-bit word offset)
L(S)GWi stko, stku < /> (G + word offset i)
o LLA byte stko << L + 8-bit word offset + frame size
. L(S)LD byte stko, stku << />> (L + 8-bit word offset + frame size)
LSA byte stku, stko, iladr >>adr, < adr + 8-bit word offset
L(S)SD byte stku, stko, iladr >>adr, << / >> (adr + 8-bit word offset)
L(S)SDO stkuy, siko, iladr >>adr, << / >> (adr)
LSSA stku, iladr >word offsct, >> adr, << adr + w
e LSSAC byte stku, ifadr >word offset j; (S - b-2 words) += j
LSTA byte stke, iladr << GA.stringPointer + 8-bit word offset
L(S)LW byte stko, stku < /> (L + 8-bit word offset + frame size)
L(S)LWi stko, stku < /> (L + word offset i + frame size)
L(S)SWi stku, iladr >>adr, </ > (adr + word offset i)
L(S)w byte stku, iladr >>adr, </ > (adr + 8-bit word offset)
e L(S)XB stku, iladr >i, >>adr, < (adr + byte offset i)
- L({S)XD stku, ifadr >i, >>adr, < (adr + doubleword offset i)
L(S)XW stku, iladr >i, >>adr, < (adr + word offset i)
MOV siku, iladr >1, >>s, >>d, move i words of (s) to (d)
NOP no opcration
NOT stku if>=0then<lelse<0
ORJP byte stku if<=0thenPC+=lelse>1; PC+=b
REST stku, iladr >> frame adr; restore control to its event handler
ROT byte stku b=1,>b>a<b; b=2,>c>b>a<b<c
RTN coend, iladr proc return; restore the caller's frame
RTNS byte tladr >arglstSize; b=wordsInResult; pop args: copy result
SHL stku, covf >i,>¢; < ¢ *2%%
' SHR stku, covt >, >C; < ¢ div 2*¥%
SPD byte,byte 32(L + wrd off bl + frame size) := (L - wrd offst b2)
SPW bytc,byte 16(L + wrd off b1 + frame size) := (L - wrd offst b2)
SYS reserved for system functions
TRAP stku, i >i; gencrate trap i
TS stku, iladr >>i¢; << (1c); (ic)=1
(N UCHK stku, subrange >hi, >lo, >a, if (a<lo) or (a>hi) then err else <a
~38-
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Other extensions involved changing from 16-bit to 32-bit addressing, adding an exception-
handling instruction, creating additional arithmetic operators for the LONGINT and REAL types,
and redefining offset-based addressing.

In the Lilith, there are special instructions to manipulate local variables. For instance,
LLW6 loads the word at an offset of six from the L register. The problem with this definition is
that the frame sizc may vary from one machine 10 another, or it may vary because of
requirements dictated by a prototype operating system. In any case, any variation requires
changing the compiler, which results in a loss cf portability. The StarLite solution was to define
all offsets as being relative to the first variable location that could be referenced. Thus, the
interpreter adds the size of the control information to the supplied offset. This change affected
the instructions that manipulated local, global. and external variables,

The deletions from the instruction set included instructions that dealt with the coroutine
structure, interrupts, priority, or the DFT. In essence, the instruction set is independent of its
execution environment since it is defincd only in terms of its logical relationship to the
components of a Modula-2 program. The underlying architecture is manipulated by using
procedures that are exported from an extracode module. The opcode space that is made available
by these changes is used to encode extensions, such as the LONGREAL type.

5. Summary

The StarLite system has been opcerational for a year. It is being used to develop operating
systems, distributed database systems, and new network protocols. The architecture has been the
"glue" that has cnabled the other picces of the environment to be put together in a way that
maximizes a researcher’s productivity.

While the initial version of the environment cxccutes as a single UNIX process, future
versions could take excellent advantage of both load balancing to distribute a running prototype
across a number of machines and of multiprocessor support, such as is found in Mach or Taos.

We gratefully acknowledge the inspiration provided by the Lilith, which may have a longer
life as a virtual machine than it ever had as a physical one.
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MODULE main key DEAB 7 15
data size 1A bytes code size 34 bytes
IMPORT x key D6D8 2 15
IMPORT InQut key 9344 3AC AE73
GLOBAL DATA
C: in\ba\V\0
: MODULE main; 12: inbmain\V\
: IMPORT x, InOut; CODE
00: 4 offset to module initialization
02: 10 offset to procedure ‘a’
: PROCEDURE a(); 04: LGA initializedFlag; TS; JPFC A; RTN
VAR r:INTEGER; OA:  LGA StringArea; JP 21; NOP
: BEGIN
InOut. WriteString("in a™); 10: ENTR 1 (* procedure ‘a' *)
InOut. WriteLn(); 12: LSTA O; LI3;CX 2 C,CX 2 B
r=x.p(3) 1B: LI3;CX 1 1; SLWO; RTN
END a;

21: SGD stringPointer
: BEGIN 23: CX10 (* init mod 1 (x); call proc 0 *)
[InOut.WriteString (in main™); 26: CX20 (* init module 2 (InOut) *)
: InOut.WriteLn(); 29: LSTA 3;LI6;CX 2 C,CX 2 B
:oaly 32: CLI1; RTN
: END main. FIXUP offsets 16 19 1D 24 27 2D 30

MODULE x key D6D8 2 15
: MODULE x; data size 1E bytes code size 4C bytes
IMPORT InQut; IMPORT InOut key 9344 3AC AE73
GLOBAL DATA

C: in\bb\O\0
03: PROCEDURE p(i:INTEGER):INTEGER; 12: inNbp\VV\D
04: VAR tINTEGER; 18: in\bx\0\0
05: PROCEDURE b():INTEGER; CODE
06: VAR s:INTEGER; 00: 6 offset to module initialization
07: BEGIN 02: 26 offset to procedure 'p’
08:  InOut.WriteString("in b™); 04: 12 offset to procedure b’
09: InOut.WriteLn(); 06: LGA initializedFlag; TS; JPFC C; RTN
10: HALT; 0C: LGA StringArea; JP 3C; NOP
11:  RETURN3;
12: ENDU; 12: ENTR 1 (* procedurc 'b’ *)
13: BEGIN 14: LSTA O;LI3;CX 1 CCX 1 B
14:  InOut.WriteString(”in p”); 1D: LI1: TRAP: L13: LI0: RTNS 1: L15: TRAP: NOP
15:  InQut.WriteLn(}; 26: ENTR 2; SPW 6 1 (* procedure 'p’ *)
16: RETURN b()*i; 2B: LSTA 3;LI3;CX 1 G CX 1 B
17: ENDp; 34 CL2: LLW6; MUL; LI1; RTNS 1;LI5; TRAP

18: BEGIN 3C: SGD stringPointer
19: InOut.WriteString("in x™); 3E: CX 10 (* init module 1 (InOut) *)
20: InOut.WriteLn(); 41: LSTA 6;LI3;CX 1 C;CX 1 B
21: END «x. JA: RTN
FIXUP offsets 18 1B 2F 32 3F 4548

Appendix A. An Example Program and Its Object Modules
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:, CLi O<i<16, Call Local procedure number i
\ CXMN 0<=M,N<=255, Call eXternal module M, procedure number N
1 ENTR N 0<=N<=255, ENTcR procedure, reserves N words for local variables
€ JPN -32768<=N<=32767, JumP to PC+N bytes
. JPFC N 0<=N<=255, Jump Forward Conditional N bytes only if the top of stack is zero
o LLi O<=i<=13, Load Immediaie i
o™ LGAN 0<=N<=255, Load the Global Address at location G+N words
- LSTAN 0<=N<=255, Load STring Address at stringPointer+N words
" NOP Null Operation
\.' RTN ReTuwrN from a subroutine
T RTNS N 0<=N<=255, ReTurN and adjust stack, N=size of return value, top-of-stack=size of argument list
i o SLWi O<=i<=11, Store 10p of stack in Local Word i
v SGDN 0<=N<=255, Store in Global word N the Doubleword at the top of stack
D }' TRAP generate the exception identified by the top of stack value
: M TS Test and Set on the address contained in the top of stack
\
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e
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Appendix Al. An Explanation of the Example’s Op Codes
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'main’ coroutine -->

‘.
y a->
€

b->
@ L->

virtual machine state

module 'x' at line 18

( G=1; L PC=3E )
iMask = FFFF; intVecPnt
SP SL
DFTPnt ModInfoPnt

errCode = 0; errString =

D.d..... .II:.P.(:..ﬁI-?...
handler = NIL

bottomFrame

staticL.ink = NIL; L = a;

frame for procedure 'main.a’

module 'main’ at line 8

PC =33; handler=NIL
Variable 'r'
The argument to x.p 3
G=100+0; L=b

PC =1C; handler = NIL

dynamic initialization frame
for module 'x'

SL >

Data Frame Table

\_

Modules' Global Data

Modules' Code

Module 'main’ Y ---> codePointer for ‘main’ ) ---> r 0004 )
Module 'x’ - initializedFlag (1) lgoEIO o
(] extraCodeMarker stringPointer — hoLsTA proc main.a
notPresentMarker global data area 14:LI3
15:CX
’ notPresentMarker 18:CX
. )| \inba\0Winbmain\o < [IBLE
IC.CXp
* IF:SLWO
Module Info Table L—> 4 codePointer for 'x’ ) > oggg
(. = oot ac g7 ) initializedFlag (1) 0013
- modNo=2 codeSize=0 stringPointer 821%21\
namc="main’ global data area 09-JPEC
kecy=DEAB 7 15 )
modNo=0 codcSize=1A OB:RTN
name='x’ . i . 0C:LGA
key=D6D8 2 15 \in\Wbb\M)I\0inbp\O\Vin /< 0E:JP
. = ize= 3C:SGD
@dNo 1 codeSize 4(:/ < PC'x'at 18

Appendix A2. The Coroutine State During Dynamic Initialization
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iMask = FFFF; intVecPnt module 'x’ at line 10
® SP SL
DFTPnt ModInfoPnt
err = 1; String = "halted” bottomE
a-> nodooocoNoH:oPocoong,ooc OLto rame
® handler = NIL
b-> kN Lo frame for procedure 'main.a’
;téuf 313n ;an dlér 3 N_IE module 'main’ at line 8
Variable 'r'
The argument to x.p 3 I
® c-> —— = frame for procedure 'x.p
;:Iar:d(l)’r LI:IlI)L PC = 8000+1F module 'x' at line 16
er =
L-> SatcLink=o L =o¢ frame for procedure 'x.b'
PC =35; handler = NIL
SP->
L}
SL -> \_ J
o
Data Frame Table Modules' Global Data Modules' Code
/" Module 'main' \ --->/" codePointer for 'main’ ) ---> {0004 W
Module 'x' - initializedFlag (1) 180Elg'l'R o
o extraCodeMarker stringPointer —1 li2.LSTA proc main.a
. notPresentMarker global data area 14:L13
‘ notPresentMarker {ggﬁ
st st re e ) \inba\0\Winbmain\0 /< }?:f-(L:I;p
s 1F:SLW0
Module Info Table _>/ codePointer for 'x' ) > 0006 ™\

T 0026
name=TnOul” "\ iiriali
key= 9344 3AC AET3 initializedFlag (1) e -
. modNo=2 codeSize=0 stringPointer 14:LSTA proc 'x.b
name="main’ global data area 16:LI3
key=DEA8 7 15 .
modNo=(0 codeSize=1A }7\%}‘((
oyt s \dn\bb\0\0in\bp\o0\0in J<— |ipitir
. QodNo:l cochizciC/ |ETRAP| <-PC (HALT)

\IF:LI3 )/
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An Adaptive Checkpointing Scheme for Distributed Databases
with Mixed Types of Transactions

Sang Hyuk Son

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

Recent study shows the possibility of having a check-
pointing mechanism that does not interfere with the transac-
tion processing, and yet achieves the global consistency of the
checkpoints. Non-interfering checkpointing mechanisms,
however, may suffer from the fact that the diverged computa-
tion needs to be maintained by the system until all of the tran-
sactions that are in progress when the checkpoint begins,
come to completion. For database systems with many long-
lived transactions that need long execution time, this require-
ment of maintaining diverged computation may make non-
interfering checkpointing not practical. In this paper, we
present a checkpointing algorithm that is non-interfering with
transaction processing. It prevents the well-known "domino
effect”, and saves intermediate results of the transaction in an
adaptive manner, managing effectively both short and long-
lived transactions in the system.

1. Introduction

The need for having recovery mechanisms in database
systems is well acknowledged. In spite of powerful database
integrity checking mechanisms which detect errors and
undesirable data, it is possible that some erroneous data may
be included in the database. Furthermore, even with a perfect
integrity checking mechanism, failures of hardware and/or
software at the processing sites may destroy the consistency
of the database. In order to cope with those errors and
failures, database systems provide recovery mechanisms, and
checkpointing is a technique frequently used in such recovery
mechanisms.

The goal of checkpointing in database management
systems is to save a consistent state of the daiabase on a
separale secure device. In case of a failure. the stored data can
be used to restore the database to an earlier point in time.
Checkpointing must be performed so as 1o minimize boih the
costs of performing checkpoints and the costs of recovering
the database. If the checkpoint intervals are very small, o0
much ume and resources are spent in checkpointing; if these
intervals are large, too much time is spent in recovery. Since
checkpointing is an effective method for maintamning con-
sistency of database systems, it has been widely used and

This work was partually supported by the Office of Naval
Research under contract no. NO0014-86-K-0245, and by the Jet Pro-
pulsion Laborstory under contract no. 957721 through Virginia Insu-
tute for Paraliel Computation.

CH2550-2. 88, 0000,0528%01.00 Z 1988 ICEE

studied by many researchers(1, 2, 3, 5, 6, 8,9, 11, 15, 16].

Since checkpointing is performed during normal
operation of the system, the interference with transaction pro-
cessing must be kept to a minimum. It is highly desirable that
users are allowed to submit transactions while the checkpoint-
ing is in progress, and the transactions are executed in the
system concurrently with the checkpointing process. A quick
recovery from failures is also desirable to many applications
of database systems. For achieving quick recovery, each
checkpoint needs to be globally consistent so that a simple
restoration of the latest checkpoint can bring the database to a
consistent state. In distributed database systems these desir-
able properties of non-interference and global consistency
make checkpointing complicated and increase the workload
of the system.

Recently, the possibility of having a checkpointing
mechanism that does not interfere with the transaction pro-
cessing, and yet achieves the global consistency of the check-
points, has been studied {2, 5, 19]. The motivation of non-
interfering checkpointing is to improve the system availabil-
ity, that is, the system must be able to execute user transac-
tions concurrently with the checkpointing process. The basic
principle behind non-interfering checkpointing mechanisms is
10 create a diverged computation of the system such that the
checkpointing process can view a consistent state that could
result by running to completion all of the transactions that are
in progress when the checkpoint begins, instead of viewing a
consistent state that actually occurs by suspending further
transaction execution.

Non-interfering checkpointing mechanisms, however,
may suffer from the fact that the diverged computation needs
1o be maintained by the system unul all of the wransactions
that are in progress when the checkpoint begins, come to
completion. This may not be a major concemn for a database
system in which all the wansactions are relatively short, and
hence can be executed in a short time period. However, for
database systems with many long-lived ransactions that need
long execution time, a non-interfering checkpointing may not
be practical because of the following reasons:

(h It takes a long time to complete one non-interfering
) checkpoint, resulung in a high storage and processing
overhead.

(2) [f a crash occurs before reflecting the result of a long-
lived transaction in the checkpoint, the system must
re-execute the transaction from the beginning, wasting
all the resources used for the initial execution of the
transaction.
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In this paper, we present a checkpointing algorithm
which manages effectively both short and long-lived transac-
tons in the database system. Our checkpointing algorithm
operates in two different modes: global mode and local mode.
In the global mode of operation, the algorithm is non-
interfering with transaction processing, and efficiently gen-
erates globally consistent checkpoints. In the local mode of
operation, it prevents the well-known “domino effect”, and
saves intermediate results of the transaction. Furthermore,
. only a minimal number of processes are involved in the
checkpointing. This paper is organized as follows. Section 2
introduces a model of computation used in this paper. Section

2.2. Failure Assumptions

A distributed database system can fail in many dif-
ferent ways, and it is almost impossible to make an algorithm
which can tolerate all possible failures. In general, failures in
distributed database systems can be classified as failures of
omission or convnission depending on whether some action
required by the system specification was not taken or some
action not specified was taken. The simplest failures of omis-
sion are simple crashes in which a site simply stops running
when it fails. The hardest failures are malicious runs in which
a site continues to run, but performs incorrect actions. Most
real failures lie between these two extremes.

» - 3 describes the algorithm for non-interfering checkpoint crea- ] i

.~ don. Section 4 raises problems associated with non- ' In this paper, we do not consider failures of commis-
S interfering checkpoint creation, and presents an adaplive sion such as the "ma.llCIOL!S runs type of failure. When a site
g checkpointing algorithm as a possible solution. Section 5 fails, it simply stops running (fail-stop). When the failed site
:.;-: presents an informal proof of the correctness of the algorithm. recovers, the fact that it has failed is recognized, and a
| \.\::-. Section 6 discusses the practicality and the robustness of the recovery procedure is initiated. We assume that site failures

)
»

algorithm, and describes the recovery methods associated

are detectable by other sites. This can be achieved either by
with the algorithm. Section 7 concludes the paper.

network protocols or by high-level time-out mechanisms in

1 the application layer. We also assume that network partition-
_‘:-: 2. Model of Computation ing never occurs. This assumption is reasonable for most
N local area networks and some long-haul networks.
s
b 2.1. Data Objects and Transactions 3. Non-Interfering Checkpoint Creation
S A database consists of a set of data objects. Each data
® object has a value and represents the smallest unit of the data- 3.1. Motivation of Non-interference
N base accessible to the user. All user requests for access to the ) } o
:-':' database are handled by the database system. We consider a . The motiyatxon of havmg a gheckpomqu sgheme
. distributed database system implemented on a computing sys- which does not interfere with ransaction processing s well
T tern where several autonomous computers (called sites) are explained in (2] by using the analogy of migrating birds and a
NN connected via a communication network. The set of data  8roup of photographers. Suppose a group of photographers
" e objects in a distributed database system is partitioned among observe a sky filled with migrating birds. Because the scene is

its sites. A database is said to be consistent if the values of

so vast that it cannot be captured by a single photograph, the
data objects satisfy a set of assertions. The assertions that

photographers must lake several snapshots and piece the

'-l
Al

- characterize the consistent states of the database are called the snapshots together w form a picture of the overall scene.

:_ consistency constraints [4). Furthermore, it is desirable that the photographers do not dis-
A . . L. turb the process that is being photographed. The snapshots
i J‘:~ T!w basic units of user acuvity in database systems are cannot all be taken at precisely the same instance because of
:’:-.' fransactions. Ea.c h fransaction represents a complete and synchronization problems, and yet they should generate a
‘ correct computation, i.e., if a transaction is executed alone on

an initially consistent database, it would terminate in a finite
time and produce correct results, leaving the database con-
sistent. A transaction is the unit of consistency and hence, it
must be afomic. By atomic, we mean that intermediate states

“*'meaningful’’ composite picture.

In a distributed database system, each site saves the
state of the data objec*s stored at it to generate a local check-
point. We cannot ensure “at the local checkpoints are saved

- of the database must not be visible outside the transaction,
. and all updates of a transaction must be executed in an all-
or-nothing fashion. A transaction is said to be commilted

at the same instance, unless a global clock can be accessed by
all the checkpointing processes. Moreover, we cannot guaran-
tee that the global checkpoint, consisting of local checkpoints

. when it is executed to completion, and it is said to be aborted ~ saved, is consistent. Non-interfering checkpointing  algo-
"o when it is not executed at all. When a transaction is commit- rithms are very useful for the situations in which a quick
" ted, the output values are finalized and made available to all recovery as weil as no blocking of transactions is desirable.
S subsequent transactions. We assume that the database system Instead of waiting for a consistent state to occur, the non-

- runs a correct transaction control mechanism (e.g., atomic interfering checkpoinung approach constructs a state that

commit algonithm(17] and concurrency control algo-

would result by completing the transactions that are in pro-
rithm(18}]), and hence assures the atomicity and the serializa-

gress when the global checkpoint begins.

° bility of transactions. - In order to make each checkpoint globally consistent,
.S Each transaction has a time-stamp associated with it updates of a transaction must be either included in the check-
- {10]. A time-stamp is a number that is assigned to a transac- point completely or not at all. To achicve this, transactions
o tion when niuated and is kept by the transaction. Two impor- are divided into two groups according to their relations to the
S tant properties of time-stamps are (1) no (wo transactions current. chcckpoim; after-checkpownt-transactions (ACPT)
- have the same time-stamp. and (2) only a finite number of fmd before-checkpoint-transactions (BCPT). Updates belong-
- transactions can have a time-stamp less than that of a given ing to BCPT are included in the current checkpoint while
® wansaction. those belonging o ACPT are not included. In a centralized
i
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database system, it is an easy task to separate transactions for
this purpose. Howevez, it is not easy in a distributed environ-
ment. For the separation of transactions in a distributed
environment, a special time-stamp which is globally agreed
upon by the participating sites is used. This special time-
stamp is called the Global Checkpoint Number (GCPN), and
it is determined as the maximum of the Local Checkpoint
Numbers (LCPN) through the coordination of all the partici-
pating sites.

An ACPT can be reclassified as a BCPT if it tums out
that the transaction must be executed before the current
checkpoint. This is called the conversion of transactions. The

updates of a converted transaction are included in the current
checkpoint.

3.2. The Algorithm

There are two types of processes involved in the exe-
cution of the algorithm: checkpoint coordinator (CC) and
checkpoint subordinate (CS). The checkpoint coordinator
starts and terminates the global checkpointing process. Once
a checkpoint has started, the coordinator does not issue the
next checkpoint request until the first one has terminated.

The variables used in the algorithm are as follows:

(1)  Local Clock (LC): a clock maintained at each site
which is manipulated by the clock rules of Lam-
port(10].

2) Local Checkpoint Number (LCPN): a number deter-
mined locally for the current checkpoint.

(3)  Global Checkpoint Number (GCPN): a globally
unique number for the current checkpoint.

(4)  CONVERT: a Boolean variable showing the comple-
tion of the conversion of all the eligible transactions at
the site.

Our basic checkpointing algorithm, called CP1, works
as follows:

(1)  The checkpoint coordinator broadcasts a Checkpoint
Request Message with a time-stamp LCqc. The local
checkpoint number of the coordinator is set to LC,
and the coordinator sets the Boolean variable CON-
VERT to false:

CONVERT . := false
LCPNCC = LCCC

All the transactions at the coordinator site with the
time-stamps not greater than LCPN¢c are marked as
BCPT.

(2) On receiving a Checkpoint Request Message, the local
clock of site m is updated and LCPN,, is determined
by the checkpoint subordinate as follows:

LC, :=max(LC¢c + 1, LCy)
LCPN,, :=LCy

The checkpoint subordinate of site m replies to the
coordinator with LCPN,,, and sets the Boolean vari-
able CONVERT 1o false:

CONVERT,, := FALSE

530

and marks all the transactions at the site m with the
time-stamps not greater than LCPN,, as BCPT.

(3)  The coordinator broadcasts the GCPN which i
decided by:

GCPN := max(LCPN,) n=1.N

(4) For all sites, after LCPN is fixed, all the transactiong
with the time-stamps greater than LCPN are marked
as temporary ACPT. If a temporary ACPT wants 1o
update any data objects, those data objects are copied
from the database to the buffer space of the transac.
tion. When a temporary ACPT commits, updated data
objects are not stored in the database as usual, but are
maintained as committed tzmporary versions (CTV)
of data objects. The data manager of each site main-
tains the permanent and temporary versions of data
objects. When a read request is made for a data object
which has committed temporary versions, the value of
the latest committed temporary version is returned.
When a write request is made for a data object which
has committed temporary versions, another committed
temporary version is created for it rather than
overwriting the previous committed temporary ver-
sion.

&) When the GCPN is known, each checkpointing pro-
cess compares the time-stamps of the temporary
ACPT with the GCPN. Transactions that satisfy the
following condition become BCPT; their updates are
reflected into the database, and are included in the
current checkpoint.

LCPN < time-stamp(T) < GCPN

The remaining temporary ACPT are treated as actual
ACPT,; their updates are not included in the current
checkpoint. These updates are included in the data-
base after the current checkpointing has been com-
pleted. After the conversion of all the eligible BCPT,
the checkpointing process sets the Boolean variable
CONVERT to true:

CONVERT := true

(6) Local checkpointing is executed by saving the state of
data objects when there is no active BCPT and the
variable CONVERT is true.

@ After the execution of local checkpointing, the values
of the latest committed temporary versions are used o
replace the values of data objects in the actual data-
base. Then, all committed temporary versions are
deleted.

The above checkpointing algorithm essentially con-
sists of two phases. The function of the first phase (steps 1
through 3) is the assignment of GCPN that is determined
from the local clocks of the system. The second phase begins
by fixing the LCPN at each site. This is necessary because
each LCPN sent to the checkpoint coordinator is a candidate
of the GCPN of the current checkpoint, and the committed
lemporary versions must be crcated for the data objects
updated by ACPT. The notions of committed temporary
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versions and conversion from ACPT to BCPT are introdixed
1o assure that each checkpoint contains all the updates made
by transactions with earlier time-stamps than the GCPN of
the checkpoint.

When a participant receives a Transaction Initiation
Message from the coordinator, it checks whether or not the
transaction can be executed at this ime. If the checkpointing
process has already executed step 5 and time-stamp(T) <
GCPN, then a reject message is returned, and the transaction
is aborted. Therefore in order 10 execute step 6, each check-
pointing process only needs to check active BCPT at its own
site, and yet the consistency of the checkpoint can be
achieved.

33. Termination of the Algorithm

The algorithm described so far has no restriction on
the method of arranging the execution order of ransactions.
With no restriction, however, it is possible that the algorithm
may never terminate. In order to ensure that the algorithm ter-
minates in a finite time, we must ensure that all BCPT ter-
minate in a finite time, because local checkpointing in step 6
can occur only when there is no active BCPT at the site.

Termination of transactions in a finite time is ensured
if the concurrency control mechanism gives priority to older
transactions over younger transactions. With such a time-
based priority, it is guaranteed that once a transaction T; is
initiated, then T; is never blocked by subsequent transactions
that are younger than T;. The number of transactions that may
block the execution of T, is finite because only a finite
number of transactions can be older than T,. Among older
transactions which may block T,, there must be the oldest
ransaction which will terminate in a finite time, since no
other transaction can block it. When it terminates, the second
oldest transaction can be executed, and then the third, and so
on. Therefore, T, will be executed in a finite time. Since we
have a finite number of BCPT when the checkpointing is ini-
tiated, all of them will terminate in a finite time, and hence
the checkpointing itself will terminate in a finite time. Con-
currency control mechanisms based on time-stamp ordering
as in [ 18] can ensure the termination of transactions in a finite
time.

4. Adaptive Checkpoint Creation

In the previous section, we have shown that the algo-
nthm will terminate in a finite time by selecting appropriate
concurrency control mechanisms. However, the amount of
ume necessary to complete one checkpoint cannot be bound
in advance; it depends on the execution time of the longest
transaction classified as a BCPT. It implies that the storage
and processing cost of the checkpointing algorithm may
become unacceptably high if a long-lived transaction is
included in the set of BCPT. We discuss the practicality of
the non-interfering checkpoints in Section 6. In addition to
that, all the resources used for the execution of such a long-
lived transaction would be wasted if the transaction must be
re-executed from the beginning due to system failures.

In this section, we extend our checkpointing algorithm
CP1 o solve these problems. We assume that each transac-
ton must carry the mark with it, when initiated, which tells
whether it is a normal transaction or a long-lived transacton.

-~ o
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The threshold to separate two types of transactions is
application-dependent. In general, transactions that need
hours of execution can be considered as long-lived transac-
tions.

The new checkpointing algorithm, called CP2,
operates in two different modes: global mode and local mode.
The global mode operation of CP2 is basically the same as
CP1, and it will efficiently generate consistent checkpoints in
a non-interfering manner. In the local mode of operation, CP2
provides a mechanism to save consistent states of a transac-
tion so that the transaction can resume execution from its
most recent checkpoint.

As in the algorithm CP1, the checkpoint coordinator
begins the algorithm CP2 by sending out Checkpoint Request
Messages. Upon receiving this request message, each site
checks whether any long-lived transaction is being executed
at the site. If yes, the site reports it to the coordinator, instead
of sending LCPN. Otherwise (i.e., no long-lived transaction
in the system), CP2 continues the same procedure as CP1, If
any site reports the existence of long-lived ransaction, the
coordinator switches to the local mode of operation, and
informs each site to operate in the local mode. The check-
point coordinator sends Checkpoint Request Messages to
each sile at an appropriate time interval (o initiate the next
checkpoint in the global mode. This attempt will succeed if
there is no active long-lived transactions in the system.

In the local mode of operation, each long-lived tran-
saction is checkpointed separately from other long-lived tran-
sactions. The coordinator of the long-lived transaction ini-
tiates the checkpoint by sending Checkpoint Request Mes-
sages to its participants. A checkpoint at each site saves a
local state of a long-lived transaction. For satisfying the
correctness requirement, a set of checkpoints, one per each
participating site of a global long-lived transaction, should
reflect the consistent state of the transaction. Inconsistent set
of checkpoints may result by non-synchronized execution of
associated checkpoint. For example, consider a long-lived
wansaction T being executed at sites P and Q, and a check-
point taken at site P at time X, and at site Q at time Y. If a
message M is sent from P after X, and received at Q before
Y, then the checkpoints would save the reception of M but
not the sending of M, resulting in a checkpoint representing
an inconsistent state of T.

We use message numbers for achieving consistency in
a set of local checkpoints of a long-lived wransaction. Mes-
sages that are exchanged by the participating transaction
managers of a long-lived wransaction contains a message
number tag. Transaction managers of a long-lived transaction
use monotonically increasing numbers in the tag of its outgo-
ing messages, and each maintains the tag numbers of the last
message it received from other participants. On receiving a
checkpoint request, a participant compares the message
number attached to the request message with the tag number
it received last from the coordinator. The participant replies
OK to the coordinator and exccutes local checkpointing only
if the request tag number is not less than the number it has
maintained. Otherwise, it reports w the coordinator that the
checkpointing cannot be executed with thal request message.

If all the replies from the participants amve and are all
OK, the coordinator decides to make all the local checkpoints
permanent. Otherwise, the decision is to discard the current
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checkpoint, and to initiate a new checkpoint. This decision is
delivered to all parucipants. After a new permanent check-
point is taken, any previous checkpoints will be discarded at
each site.

§. Conslstency of Global Checkpolints

In this section we give an informal proof of the
correctness of the algorithm. We show that each mode of
operanion satisfies the requirement of correctness. Although
the consistency is our correctness criteria for the checkpoint-
ing algorithm, the unit for consistency is different for dif-
ferent mode of operation; a transaction is the unit of con-
sistency in the global mode, while an event of a transaction is
the unit of consistency in the local mode. We first show the
consistency in the global mode.

§.1. Consistency in Global Mode

In addition to proving the consistency of the check-
points generated by the algorithm in the global mode, we
show that the algonithm has another desirable property that
each checkpoint contains all the updates of transactions with
earlier time-stamps than its GCPN. This property reduces the
work required in the actual recovery, which 1s discussed in
Section 6. A longer and more thorough discussion on the
correctness of the algorithm is given in (19].

The propertes of the algorithm we want to show are

)] a set of all local checkpoints with the same GCPN
represents a consistent database state, and

(2) all the updates of the committed transactions with ear-
lier ume-stamps than the GCPN are reflected in the
current checkpoint.

Note that only one checkpointing process can be active
at a ume because the checkpointing coordinator is not
allowed to issue another checkpointing request before the ter-
minadon of the previous one.

A database siate is consistent if the set of data objects
satisfies the consistency constraints(4]. Since a transaction is
the unit of consistency, a database state S is consistent if the
following holds:

(1) For each wransaction T, S contains all subtransactions
of T or it contains none of them.

(2) If T is contained in S, then each predecessor T' of T is
also contained in S. (T" is a predecessor of T if it
modified the data object which T accessed at some
later point 1n time.)

For a set of local checkpoints 1o be globally consistent,
all the local checkpoints with the same GCPN must be con-
sistent with each other concerning the updates of transactions
that are executed before and after the checkpoint. Therefore,
o prove that the algorithm sausfies both properties, it is
sufficient to show that the updates of a global transaction T
are included in CP, at each parucipating site of T, if and only
if time-stamp(T) < GCPN(CP)). This is enforced by the
mechanism to determine the value of the GCPN, and by the
conversion of the temporary ACPT into BCPT.

A transaction is said to be reflected in data objects if
the values of data objects represent the updates made by the
ransaction. We assume that the database system provides a

reliable mechanism for writing into the secondary storage
such that a writing operation of a transaction is atomic anq
always successful when the transaction commits. Because
updates of a transaction are reflected in the database only
after the transaction has been successfully executed and com,.
mitted, partial results of transactions cannot be included i
checkpoints.

The checkpointing algorithm assures that the sequence
of actions are executed in some specific order. At each site,
conversion of eligible transactions occurs after the GCPN g
known, and local checkpointing cannot start before the
Boolean variable CONVERT becomes true. CONVERT is set
to false at each site after it determines the LCPN, and it
becomes true only after the conversion of all the eligible tran-
sactions. Thus, it is not possible for a local checkpoint to save
the state of the database in which some of the eligible transac-
tions are not reflected because they remain unconverted.

We can show that a transaction becomes BCPT if and
only if its time-stamp is not greater than the current GCPN.
This implies that all the eligible BCPT will become BCPT
before local checkpointing begins in step 6. Therefore,
updates of all BCPT are reflected in the current checkpoint.

From the atomic property of transactions provided by
the transaction control mechanism (e.g. commit protocol in
f171), 1t can be assured that if a transaction is committed at a
participating site then it is committed at all other participating
sites. Therefore if a transaction 1s committed at one site, and
if it satisfies the time-stamp condition above, its updates are
reflected in the database and also in the current checkpoint at
all the participating sites.

5.2. Consistency in Local Mode

In order to prove that the algorithm CP2 is correct in
the local mode of operation, we need to show that a set of
local checkpoints always represents a consistent state of the
transaction that is checkpointed. In other words, it is
sufficient to show that if the set of local checkpoints is con-
sistent before the execution of CP2, the set of checkpoints is
also consistent after the completion of CP2.

Since the initiation point of a transaction is consistent,
the system has at least one set of consistent checkpoints of a
transaction (i.e., the initiation point). Therefore, if CP2 does
not generate a new set of checkpoints upon its termination,
the system has the previous checkpoint which is consistent.

Without loss of generality, assume a new set of check-
points is taken by CP2. We show by contradiction that the set
of checkpoints after the termination of CP2 is consistent. Sup-
pose it is not consistent. Then there are two transaction
managers P and Q such that P sent Q a message M after mak-
ing its checkpoint, and Q received M before making its
checkpoint. Consider the case that P is the coordinator. Upon
receiving a request message from the coordinator, Q must
have sent OK because Q could not have made its checkpoint
permanent otherwise. It implies that the tag number of the
request message 1s greater than those of messages Q has
received, a contradiction. If Q is the coordinator, P cannot
start local checkpointing before receiving a request message
from Q. Since Q sent the request message after receiving M,
P must have received it after it sent M, a contradiction.
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,.::: ";3; 6. Discussion variables can be maintained within a certain threshold level,
.':::‘ ause ) The desirable properties of non-.nterference and global no:}-mterferingfcheckpoiming woulld not scvqely degrade the
At only consistency not only make the checkpointing more compli- perionmance ot the system. A de[a,'lcq d’,‘c’cu_ssmn.o" the prac-
‘om- . cated in distributed database systems, but also increase the ticality of non-interfering checkpointing is given in [19].
- din : workload of the system. [t may turn out that the overhead of
- | the checkpointing mechanism is unacceptably high, in which 6.2. Site Failures
. nce : case the mechanism should be abandoned in spite of its desir- So far, we ase med that no failure occurs during
" sie : able properties. The practicality of non-interfering check- checkpointing. This assumption can be justified if the proba-
TN powntng, therefore, depends partially on the amount of exra  bility of failures during a sing'e checkpoint is extremely
the ! workload incurred by the checkpointing mechanism. In this small. However, it is not always the case, and we now con-
 set f section v‘;le comer p;agpcalltymof n;m-mwrfengg check- sider the method to make the algorithm resilient to failures.
Sdon : pomntng algon » Bnd Clscuss (e robLsmess and recovery During the global mode of operation, the algorithm
“an- ! methods associated with the algerithm CP2. CP2is 'msen.gilive to failures of suborgfnalcs. Ifa subc%rdinale
dve i . fails hefore the broadcast of a Checkpoint Request Message,
' 6.1. Practicality of Non-Interfering Checkpoints it is excluded from the next chcckpol'(url)s Ifa :L?bordinale doges
There are two performance measures that can be used not send its LCPN to the coordinator, it is excluded from the
wnd in discussing the practicality of non-interfering checkpoint- current checkpoint. When the site recovers from the failure,
N ‘ ing: extra storage and extra workload required. The extra the recovery manager of the site must find out the GCPN of
< PT storage requirement of the algorithm is simply the committed the latest checkpoint. After receiving information of transac-
; terporary version (CTV) file size, which is a function of the tions which must be executed for recovery, the recovery
expected number of ACPT of the site, the number of data manager brings the database up to date by executing all the
objects updated by a typical transacuon, and the size of the ransactions whose time-stamps are not greater than the latest
Y basic unit of information: GCPN. Other transactions are executed after the s:ate of the

daia objects at the site 1s saved by the checkpoinung process.
CTV file size = N x(number of updates)

: An atomic commit protocol guarantees that a transac-
- 18 x(size of the data object) p £

ton is aborted if any partcipant fals before it sends a
where N, is the expected number of ACPT of the site. Precommit message to the coordinator. Therefore, site

The size of the CTV file may become unacceptably fadures d‘uring the cxecuuon‘of the algorithm cannot affgct
large if N, or the number of updates becomes very large. the consistency of checkpom!s' because each checkpoint
Unfortunately, they are determined dynamically from the reflects only the updates of committed BCPT.

charactenistics of ransactions submitted 1o the database svs- In the local mode of operaton, a failure of a partici-
tem, and hence carnot be controlled. Since N, is proportional pant prevents the coordinator from receiving OK frem all the
to the execution time of the longest BCPT at the site, it would participants, or prevents the participants from receiving the
become unacceptably large if a long-lived transaction is being decision message from the coc-dinator. However, because a
executed when a checkpoint begins at the site. The only ransaction is aborted by an atomic commit protocol, it is not
parameter we can change in order to reduce the CTV file size necessary to make checkpointing robust 1o failures of partici-

is the granularity ol a data object. The size of the CTV file pants.
can be minimized if we minimize the size of the data object.
By doing so, however, the overhead of normal transaction
processing (e.g., locking and unlocking, deadlock detection,
etc) will be increased. Also, there is a trade-off between the
degree of concurrency and the lock granularity[14]. Therefore
the granularity of a data object should be determined care-
fully by considering all such trade-offs, and we cannot ] ]
mirumize the size of the CTV file by simply minimizing the One possible solution to this invelves the use of a
data object granulanty. number of backup processes: these are processes that can
assume responsibility for completing the coordinator's
activity in the event of its failure. These backup processes are
in fact checkpoinung subordinates. If the coordinator fails
before it broadcasts the GCPN message, one of the backups
takes the control. A similar mechanism is used in SDD-1 [7]
for reliable commutment of transacuons. Proper coordinaton

The algorithm is, however, sensitve to failures of the
coordinator. In particular, if the coordinator crashes during
the first phase of the global mode of operation (i.e., before the
GCPN message is sent to subordinates), every transaction
becomes ACPT, requiring o much storage for committed
temporary versions.

There is no extra storage requirement in intrusive
checkpointing mechanisms(1, 8, 15]. However this property
is balanced by the cases in which the system must block
ACPT or abort half-way done global transactions because of
the checkpeinting process.

The extra workload imposed by the algorithm mainly among the backup processes is crucial here. In the event of ]
consists of the workload for (1) deterrumung .o GCPN, (2) the failure of the coordinator, one, and only one backup pro-
- commutung ACPT (move data objects to the CTV file), (3) cess has to assume the control. The algonthm for accomplish-
- reflecung the CTV file (move committed temporary versions ing this assumes an ordening among the backup processes,
from the CTV file o the database), and (4) making the CTV designated in order as p,, Py ..., Py, Process p, , is referred o
" file clear when the reflect operauon is finished. Among these, as the predecessor of process py (for k > (), and the coordina-
workload for (2) and (3) dominates others. As in cxua storage tor 1s taken as the predecessor of process p;.

estimauon, they are determined by the number of ACPT and

We assume that the network service enables processes
the number of updates. Thercfore, as far as the values of these P

o be informed when a given site achieves a specified status
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(simply UP or DOWN in this case). Initially, each of the
backup processes checks the failure of its predecessor. Then
the following rules are used.

(1)  If the predecessor is found to be down, then the pro-
cess begins 10 check the predecessor of the failed pro-
cess.

(2)  If the coordinator is found to be down, the first backup
process assumes the control of checkpointing.

(3)  If a backup process recovers, it ceases to be a part of
the current checkpointing.

4) After each checkpoint, the list of backup processes is
adjusted by including all the UP sites.

These rules guarantee that at most one process, either
the coordinator or one of the backup processes, will be in
control at any given time. Thus a checkpointing will ter-
minate 1n a finite time once it begins.

63. Recovery

The recovery from site crashes is called the site
recovery. The complexity of the site recovery varies in distri-
buted database systems according to the failure situation[15].
If the crashed site has no replicated data objects and if all the
recovery information is available at the crashed site, local
recovery is enough. Global recovery is necessary because of
failures which require the global database to be restored to
some earlier consistent state. For instance, if the transaction
log is partially destroyed at the crashed site, local recovery
cannot be executed to completion.

When a global recovery is required, the database sys-
tem has two alternatives: a fast recovery and a complete
recovery. A fast recovery is a simple restoration of the latest
global checkpoint. Since each checkpoint generated by the
algorithm is globally consistent, the restored state of the data-
base is assured to be consistent. However, all the transactions
committed during the time interval from the latest checkpoint
until the time of crash would be lost. A complete recovery is
performed to restore as many transactions that can be redone
as possible. The wade-offs between the two recovery methods
are the recovery time and the number of transactions saved by
the recovery,

Quick recovery from failures is critical for some appli-
cations of distribuied database systems which require high
availability (e.g.. baliistic missile defense or air traffic con-
wol). For those applications, the fate of the mission, or even
the lives of human beings, may depend on the correct values
of the data and the accessibility to it. Availability of a con-
sistent state is of primary concern for them, not the most up-
w-dale consistent state. If a simple restoration of the latest
checkpoint could bring the database to a consistent state, it
may not be worthwhile 10 spend time in recovery by execut-
ing a complete recovery to recover some of the transactions.

For the applications in which each committed ansac-
tion is so important that the most up-to-date consistent state
of the database is highly desirable, or if the checkpoint inter-
vals are large such that a lot of transactions may be lost by the
fast recovery, a complete recovery is appropriate to use. The
cost of a complete recovery is the increased recovery time
which reduces the availability of the database. Searching
through the transaction log is necessary for a complete

4
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recovery. The second property of the algorithm (i.e., each
checkpoint reflects all the updates of transactions with earlier
time-stamps than its GCPN) is useful in reducing the amount
of searching because the set of transactions whose updates
must be redone can be determined by the simple comparison
of the time-stamps of transactions with the GCPN of the
checkpoint. Complete recovery mechanisms based on the spe-
cial time-stamp of checkpoints (e.g., GCPN) have been pro-
posed in [9, 20].

After the site recovery is completed using either a fast
recovery procedure or a complete recovery procedure, the
recovering site checks whether it has completed a local mode
checkpointing for any long-lived transactions. If any local
mode checkpoints are found, those transactions can be res-
tarted from the saved checkpoints. In this case, the coordina-
tor of the ransaction requests all the participants to restart
from their checkpoints if and only if they all are able to restant
from that checkpoint. The coordinator makes a decision
whether to restart the transaction from the checkpoint or from
the beginning based on the responses from the participants,
and sends the decision message 1o all the participants. We
provide such a two-phase recovery protocol in order to main-
tain the consistency of the databise in case of damaged
checkpoints at the failure site. A transaction will be restarted
from the beginning if any participant is not able to restore the
checkpointed state of the transaction for any reason.

7. Concluding Remarks

During normal operation of the database system,
checkpointing is performed to save information necessary for
recovery from a failure. For better recoverability and availa-
bility of distributed database systems, checkpointing must be
able to generate a globally consistent database state, without
interfering with transaction processing. Site autonomy in dis-
tributed database systems makes the checkpointing more
complicated than in centralized database systems. Also,
long-lived transactions may substantially increase the over-
head associated with non-interfering checkpointing, and make
it unacceptable in many applications of the distributed sys-
tems. In this paper, a8 new checkpointing algorithm for distri-
buted database systems is presented and discussed. The
correctness of the algorithm is shown, and the robustness of
the algorithm and recovery procedures associated with it are
discussed. For the applications in which the system must exe-
cute a mixture of short and long-lived transactions, and the
ability of continuous processing of transactions is so critical
that the blocking of transaction activity for checkpointing is
not feasible, we believe that the algorithm presented in this
paper provides a practical solution 10 the problem of check-
pointing and recovery in distributed database systems.
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